]> git.tdb.fi Git - libs/gl.git/blob - source/glsl/resolve.cpp
Remove output variables which are not referenced
[libs/gl.git] / source / glsl / resolve.cpp
1 #include <msp/core/algorithm.h>
2 #include <msp/core/raii.h>
3 #include <msp/strings/utils.h>
4 #include "reflect.h"
5 #include "resolve.h"
6
7 using namespace std;
8
9 namespace Msp {
10 namespace GL {
11 namespace SL {
12
13 void BlockHierarchyResolver::enter(Block &block)
14 {
15         r_any_resolved |= (current_block!=block.parent);
16         block.parent = current_block;
17 }
18
19
20 bool TypeResolver::apply(Stage &s)
21 {
22         stage = &s;
23         s.types.clear();
24         r_any_resolved = false;
25         s.content.visit(*this);
26         return r_any_resolved;
27 }
28
29 TypeDeclaration *TypeResolver::get_or_create_array_type(TypeDeclaration &type)
30 {
31         auto i = array_types.find(&type);
32         if(i!=array_types.end())
33                 return i->second;
34
35         BasicTypeDeclaration *array = new BasicTypeDeclaration;
36         array->source = INTERNAL_SOURCE;
37         array->name = type.name+"[]";
38         array->kind = BasicTypeDeclaration::ARRAY;
39         array->base = type.name;
40         array->base_type = &type;
41         stage->content.body.insert(type_insert_point, array);
42         array_types[&type] = array;
43         return array;
44 }
45
46 void TypeResolver::resolve_type(TypeDeclaration *&type, const string &name, bool array)
47 {
48         TypeDeclaration *resolved = 0;
49         auto i = stage->types.find(name);
50         if(i!=stage->types.end())
51         {
52                 auto j = alias_map.find(i->second);
53                 resolved = (j!=alias_map.end() ? j->second : i->second);
54         }
55
56         if(resolved && array)
57                 resolved = get_or_create_array_type(*resolved);
58
59         r_any_resolved |= (resolved!=type);
60         type=resolved;
61 }
62
63 void TypeResolver::visit(Block &block)
64 {
65         for(auto i=block.body.begin(); i!=block.body.end(); ++i)
66         {
67                 if(!block.parent)
68                         type_insert_point = i;
69                 (*i)->visit(*this);
70         }
71 }
72
73 void TypeResolver::visit(BasicTypeDeclaration &type)
74 {
75         resolve_type(type.base_type, type.base, false);
76
77         if(type.kind==BasicTypeDeclaration::VECTOR && type.base_type)
78                 if(BasicTypeDeclaration *basic_base = dynamic_cast<BasicTypeDeclaration *>(type.base_type))
79                         if(basic_base->kind==BasicTypeDeclaration::VECTOR)
80                         {
81                                 type.kind = BasicTypeDeclaration::MATRIX;
82                                 /* A matrix's base type is its column vector type.  This will put
83                                 the column vector's size, i.e. the matrix's row count, in the high
84                                 half of the size. */
85                                 type.size |= basic_base->size<<16;
86                         }
87
88         if(type.kind==BasicTypeDeclaration::ALIAS && type.base_type)
89                 alias_map[&type] = type.base_type;
90         else if(type.kind==BasicTypeDeclaration::ARRAY && type.base_type)
91                 array_types[type.base_type] = &type;
92
93         stage->types.insert(make_pair(type.name, &type));
94 }
95
96 void TypeResolver::visit(ImageTypeDeclaration &type)
97 {
98         resolve_type(type.base_type, type.base, false);
99         stage->types.insert(make_pair(type.name, &type));
100 }
101
102 void TypeResolver::visit(StructDeclaration &strct)
103 {
104         stage->types.insert(make_pair(strct.name, &strct));
105         TraversingVisitor::visit(strct);
106 }
107
108 void TypeResolver::visit(VariableDeclaration &var)
109 {
110         resolve_type(var.type_declaration, var.type, var.array);
111         if(iface_block && var.interface==iface_block->interface)
112                 var.interface.clear();
113 }
114
115 void TypeResolver::visit(InterfaceBlock &iface)
116 {
117         if(iface.members)
118         {
119                 SetForScope<InterfaceBlock *> set_iface(iface_block, &iface);
120                 iface.members->visit(*this);
121
122                 StructDeclaration *strct = new StructDeclaration;
123                 strct->source = INTERNAL_SOURCE;
124                 strct->name = format("_%s_%s", iface.interface, iface.block_name);
125                 strct->members.body.splice(strct->members.body.begin(), iface.members->body);
126                 stage->content.body.insert(type_insert_point, strct);
127                 stage->types.insert(make_pair(strct->name, strct));
128
129                 iface.members = 0;
130                 strct->interface_block = &iface;
131                 iface.struct_declaration = strct;
132         }
133
134         TypeDeclaration *type = iface.struct_declaration;
135         if(type && iface.array)
136                 type = get_or_create_array_type(*type);
137         r_any_resolved = (type!=iface.type_declaration);
138         iface.type_declaration = type;
139 }
140
141 void TypeResolver::visit(FunctionDeclaration &func)
142 {
143         resolve_type(func.return_type_declaration, func.return_type, false);
144         TraversingVisitor::visit(func);
145 }
146
147
148 bool VariableResolver::apply(Stage &s)
149 {
150         stage = &s;
151         s.interface_blocks.clear();
152         r_any_resolved = false;
153         s.content.visit(*this);
154         for(Statement *b: redeclared_builtins)
155                 b->source = GENERATED_SOURCE;
156         NodeRemover().apply(s, nodes_to_remove);
157         return r_any_resolved;
158 }
159
160 void VariableResolver::enter(Block &block)
161 {
162         block.variables.clear();
163 }
164
165 void VariableResolver::visit(RefPtr<Expression> &expr)
166 {
167         r_replacement_expr = 0;
168         expr->visit(*this);
169         if(r_replacement_expr)
170         {
171                 expr = r_replacement_expr;
172                 /* Don't record assignment target when doing a replacement, because chain
173                 information won't be correct. */
174                 r_assignment_target.declaration = 0;
175                 r_any_resolved = true;
176         }
177         r_replacement_expr = 0;
178 }
179
180 void VariableResolver::check_assignment_target(Statement *declaration)
181 {
182         if(record_target)
183         {
184                 if(r_assignment_target.declaration)
185                 {
186                         /* More than one reference found in assignment target.  Unable to
187                         determine what the primary target is. */
188                         record_target = false;
189                         r_assignment_target.declaration = 0;
190                 }
191                 else
192                         r_assignment_target.declaration = declaration;
193         }
194         // TODO This check is overly broad and may prevent some optimizations.
195         else if(declaration && declaration==r_assignment_target.declaration)
196                 r_self_referencing = true;
197 }
198
199 void VariableResolver::visit(VariableReference &var)
200 {
201         VariableDeclaration *declaration = 0;
202
203         /* Look for variable declarations in the block hierarchy first.  Interface
204         blocks are always defined in the top level so we can't accidentally skip
205         one. */
206         for(Block *block=current_block; (!declaration && block); block=block->parent)
207         {
208                 auto i = block->variables.find(var.name);
209                 if(i!=block->variables.end())
210                         declaration = i->second;
211         }
212
213         if(!declaration)
214         {
215                 const map<string, InterfaceBlock *> &blocks = stage->interface_blocks;
216                 auto i = blocks.find(var.name);
217                 if(i==blocks.end())
218                 {
219                         // Look for the variable in anonymous interface blocks.
220                         for(i=blocks.begin(); i!=blocks.end(); ++i)
221                                 if(i->second->instance_name.empty() && i->second->struct_declaration)
222                                         if(i->second->struct_declaration->members.variables.count(var.name))
223                                                 break;
224                 }
225
226                 if(i!=blocks.end())
227                 {
228                         /* The name refers to either an interface block with an instance name
229                         or a variable declared inside an anonymous interface block.  Prepare
230                         new syntax tree nodes accordingly. */
231                         InterfaceBlockReference *iface_ref = new InterfaceBlockReference;
232                         iface_ref->source = var.source;
233                         iface_ref->line = var.line;
234                         iface_ref->declaration = i->second;
235
236                         if(i->second->instance_name.empty())
237                         {
238                                 iface_ref->name = format("%s %s", i->second->interface, i->second->block_name);
239
240                                 MemberAccess *memacc = new MemberAccess;
241                                 memacc->source = var.source;
242                                 memacc->line = var.line;
243                                 memacc->left = iface_ref;
244                                 memacc->member = var.name;
245
246                                 r_replacement_expr = memacc;
247                         }
248                         else
249                         {
250                                 iface_ref->name = var.name;
251                                 r_replacement_expr = iface_ref;
252                         }
253                 }
254         }
255
256         r_any_resolved |= (declaration!=var.declaration);
257         var.declaration = declaration;
258
259         check_assignment_target(var.declaration);
260 }
261
262 void VariableResolver::visit(InterfaceBlockReference &iface)
263 {
264         auto i = stage->interface_blocks.find(iface.name);
265         InterfaceBlock *declaration = (i!=stage->interface_blocks.end() ? i->second : 0);
266         r_any_resolved |= (declaration!=iface.declaration);
267         iface.declaration = declaration;
268
269         check_assignment_target(iface.declaration);
270 }
271
272 void VariableResolver::visit(MemberAccess &memacc)
273 {
274         TraversingVisitor::visit(memacc);
275
276         VariableDeclaration *declaration = 0;
277         int index = -1;
278         if(StructDeclaration *strct = dynamic_cast<StructDeclaration *>(memacc.left->type))
279         {
280                 auto i = strct->members.variables.find(memacc.member);
281                 if(i!=strct->members.variables.end())
282                 {
283                         declaration = i->second;
284                         index = 0;
285                         for(auto j=strct->members.body.begin(); (j!=strct->members.body.end() && j->get()!=i->second); ++j)
286                                 ++index;
287
288                         if(record_target)
289                                 add_to_chain(r_assignment_target, Assignment::Target::MEMBER, index);
290                 }
291         }
292         else if(BasicTypeDeclaration *basic = dynamic_cast<BasicTypeDeclaration *>(memacc.left->type))
293         {
294                 bool scalar_swizzle = ((basic->kind==BasicTypeDeclaration::INT || basic->kind==BasicTypeDeclaration::FLOAT) && memacc.member.size()==1);
295                 bool vector_swizzle = (basic->kind==BasicTypeDeclaration::VECTOR && memacc.member.size()<=4);
296                 if(scalar_swizzle || vector_swizzle)
297                 {
298                         static const char component_names[] = { 'x', 'r', 's', 'y', 'g', 't', 'z', 'b', 'p', 'w', 'a', 'q' };
299
300                         bool ok = true;
301                         uint8_t components[4] = { };
302                         for(unsigned i=0; (ok && i<memacc.member.size()); ++i)
303                                 ok = ((components[i] = (std::find(component_names, component_names+12, memacc.member[i])-component_names)/3) < 4);
304
305                         if(ok)
306                         {
307                                 Swizzle *swizzle = new Swizzle;
308                                 swizzle->source = memacc.source;
309                                 swizzle->line = memacc.line;
310                                 swizzle->oper = memacc.oper;
311                                 swizzle->left = memacc.left;
312                                 swizzle->component_group = memacc.member;
313                                 swizzle->count = memacc.member.size();
314                                 copy(components, components+memacc.member.size(), swizzle->components);
315                                 r_replacement_expr = swizzle;
316                         }
317                 }
318         }
319
320         r_any_resolved |= (declaration!=memacc.declaration || index!=memacc.index);
321         memacc.declaration = declaration;
322         memacc.index = index;
323 }
324
325 void VariableResolver::visit(Swizzle &swizzle)
326 {
327         TraversingVisitor::visit(swizzle);
328
329         if(record_target)
330         {
331                 unsigned mask = 0;
332                 for(unsigned i=0; i<swizzle.count; ++i)
333                         mask |= 1<<swizzle.components[i];
334                 add_to_chain(r_assignment_target, Assignment::Target::SWIZZLE, mask);
335         }
336 }
337
338 void VariableResolver::visit(BinaryExpression &binary)
339 {
340         if(binary.oper->token[0]=='[')
341         {
342                 {
343                         /* The subscript expression is not a part of the primary assignment
344                         target. */
345                         SetFlag set(record_target, false);
346                         visit(binary.right);
347                 }
348                 visit(binary.left);
349
350                 if(record_target)
351                 {
352                         unsigned index = 0x3F;
353                         if(Literal *literal_subscript = dynamic_cast<Literal *>(binary.right.get()))
354                                 if(literal_subscript->value.check_type<int>())
355                                         index = literal_subscript->value.value<int>();
356                         add_to_chain(r_assignment_target, Assignment::Target::ARRAY, index);
357                 }
358         }
359         else
360                 TraversingVisitor::visit(binary);
361 }
362
363 void VariableResolver::visit(Assignment &assign)
364 {
365         {
366                 SetFlag set(record_target);
367                 r_assignment_target = Assignment::Target();
368                 visit(assign.left);
369                 r_any_resolved |= (r_assignment_target<assign.target || assign.target<r_assignment_target);
370                 assign.target = r_assignment_target;
371         }
372
373         r_self_referencing = false;
374         visit(assign.right);
375         assign.self_referencing = (r_self_referencing || assign.oper->token[0]!='=');
376 }
377
378 void VariableResolver::merge_layouts(Layout &to_layout, const Layout &from_layout)
379 {
380         for(const Layout::Qualifier &q: from_layout.qualifiers)
381         {
382                 auto i = find_member(to_layout.qualifiers, q.name, &Layout::Qualifier::name);
383                 if(i!=to_layout.qualifiers.end())
384                 {
385                         i->has_value = q.value;
386                         i->value = q.value;
387                 }
388                 else
389                         to_layout.qualifiers.push_back(q);
390         }
391 }
392
393 void VariableResolver::visit(VariableDeclaration &var)
394 {
395         TraversingVisitor::visit(var);
396
397         auto i = current_block->variables.find(var.name);
398         VariableDeclaration *existing = 0;
399         InterfaceBlock *block = 0;
400         if(i!=current_block->variables.end())
401                 existing = i->second;
402         else if(!current_block->parent)
403         {
404                 const map<string, InterfaceBlock *> &blocks = stage->interface_blocks;
405                 for(auto j=blocks.begin(); j!=blocks.end(); ++j)
406                         if(j->second->instance_name.empty() && j->second->struct_declaration)
407                         {
408                                 map<string, VariableDeclaration *> &block_vars = j->second->struct_declaration->members.variables;
409                                 i = block_vars.find(var.name);
410                                 if(i!=block_vars.end())
411                                 {
412                                         existing = i->second;
413                                         block = j->second;
414                                         break;
415                                 }
416                         }
417         }
418
419         if(!existing)
420                 current_block->variables.insert(make_pair(var.name, &var));
421         else if(!current_block->parent && (block ? block->interface : existing->interface)==var.interface && existing->type==var.type && existing->array==var.array)
422         {
423                 if(existing->source==BUILTIN_SOURCE)
424                 {
425                         if(var.layout)
426                         {
427                                 if(existing->layout)
428                                         merge_layouts(*existing->layout, *var.layout);
429                                 else
430                                         existing->layout = var.layout;
431                         }
432                         if(var.array_size)
433                                 existing->array_size = var.array_size;
434
435                         redeclared_builtins.push_back(existing);
436                         if(block)
437                         {
438                                 redeclared_builtins.push_back(block);
439                                 for(const auto &kvp: block->struct_declaration->members.variables)
440                                         redeclared_builtins.push_back(kvp.second);
441                         }
442
443                         nodes_to_remove.insert(&var);
444                         r_any_resolved = true;
445                 }
446                 else if(existing->array && !existing->array_size && !var.layout && !var.init_expression)
447                 {
448                         existing->array_size = var.array_size;
449                         nodes_to_remove.insert(&var);
450                         r_any_resolved = true;
451                 }
452         }
453 }
454
455 void VariableResolver::visit(InterfaceBlock &iface)
456 {
457         /* Block names can be reused in different interfaces.  Prefix the name with
458         the first character of the interface to avoid conflicts. */
459         stage->interface_blocks.insert(make_pair(format("%s %s", iface.interface, iface.block_name), &iface));
460         if(!iface.instance_name.empty())
461                 stage->interface_blocks.insert(make_pair(iface.instance_name, &iface));
462
463         TraversingVisitor::visit(iface);
464 }
465
466
467 bool ExpressionResolver::apply(Stage &s)
468 {
469         stage = &s;
470         r_any_resolved = false;
471         s.content.visit(*this);
472         return r_any_resolved;
473 }
474
475 ExpressionResolver::Compatibility ExpressionResolver::get_compatibility(BasicTypeDeclaration &left, BasicTypeDeclaration &right)
476 {
477         if(&left==&right)
478                 return SAME_TYPE;
479         else if(can_convert(left, right))
480                 return LEFT_CONVERTIBLE;
481         else if(can_convert(right, left))
482                 return RIGHT_CONVERTIBLE;
483         else
484                 return NOT_COMPATIBLE;
485 }
486
487 BasicTypeDeclaration *ExpressionResolver::find_type(BasicTypeDeclaration::Kind kind, unsigned size, bool sign)
488 {
489         auto i = find_if(basic_types,
490                 [kind, size, sign](const BasicTypeDeclaration *t){ return t->kind==kind && t->size==size && t->sign==sign; });
491         return (i!=basic_types.end() ? *i : 0);
492 }
493
494 BasicTypeDeclaration *ExpressionResolver::find_type(BasicTypeDeclaration &elem_type, BasicTypeDeclaration::Kind kind, unsigned size)
495 {
496         auto i = find_if(basic_types,
497                 [&elem_type, kind, size](BasicTypeDeclaration *t){ return get_element_type(*t)==&elem_type && t->kind==kind && t->size==size; });
498         return (i!=basic_types.end() ? *i : 0);
499 }
500
501 void ExpressionResolver::convert_to(RefPtr<Expression> &expr, BasicTypeDeclaration &type)
502 {
503         RefPtr<FunctionCall> call = new FunctionCall;
504         call->name = type.name;
505         call->constructor = true;
506         call->arguments.push_back_nocopy(expr);
507         call->type = &type;
508         expr = call;
509 }
510
511 bool ExpressionResolver::convert_to_element(RefPtr<Expression> &expr, BasicTypeDeclaration &elem_type)
512 {
513         if(BasicTypeDeclaration *expr_basic = dynamic_cast<BasicTypeDeclaration *>(expr->type))
514         {
515                 BasicTypeDeclaration *to_type = &elem_type;
516                 if(is_vector_or_matrix(*expr_basic))
517                         to_type = find_type(elem_type, expr_basic->kind, expr_basic->size);
518                 if(to_type)
519                 {
520                         convert_to(expr, *to_type);
521                         return true;
522                 }
523         }
524
525         return false;
526 }
527
528 bool ExpressionResolver::truncate_vector(RefPtr<Expression> &expr, unsigned size)
529 {
530         if(BasicTypeDeclaration *expr_basic = dynamic_cast<BasicTypeDeclaration *>(expr->type))
531                 if(BasicTypeDeclaration *expr_elem = get_element_type(*expr_basic))
532                 {
533                         RefPtr<Swizzle> swizzle = new Swizzle;
534                         swizzle->left = expr;
535                         swizzle->oper = &Operator::get_operator(".", Operator::POSTFIX);
536                         swizzle->component_group = string("xyzw", size);
537                         swizzle->count = size;
538                         for(unsigned i=0; i<size; ++i)
539                                 swizzle->components[i] = i;
540                         if(size==1)
541                                 swizzle->type = expr_elem;
542                         else
543                                 swizzle->type = find_type(*expr_elem, BasicTypeDeclaration::VECTOR, size);
544                         expr = swizzle;
545
546                         return true;
547                 }
548
549         return false;
550 }
551
552 void ExpressionResolver::resolve(Expression &expr, TypeDeclaration *type, bool lvalue)
553 {
554         r_any_resolved |= (type!=expr.type || lvalue!=expr.lvalue);
555         expr.type = type;
556         expr.lvalue = lvalue;
557 }
558
559 void ExpressionResolver::visit(Block &block)
560 {
561         SetForScope<Block *> set_block(current_block, &block);
562         for(auto i=block.body.begin(); i!=block.body.end(); ++i)
563         {
564                 insert_point = i;
565                 (*i)->visit(*this);
566         }
567 }
568
569 void ExpressionResolver::visit(Literal &literal)
570 {
571         if(literal.value.check_type<bool>())
572                 resolve(literal, find_type(BasicTypeDeclaration::BOOL, 1), false);
573         else if(literal.value.check_type<int>())
574                 resolve(literal, find_type(BasicTypeDeclaration::INT, 32, true), false);
575         else if(literal.value.check_type<unsigned>())
576                 resolve(literal, find_type(BasicTypeDeclaration::INT, 32, false), false);
577         else if(literal.value.check_type<float>())
578                 resolve(literal, find_type(BasicTypeDeclaration::FLOAT, 32), false);
579 }
580
581 void ExpressionResolver::visit(VariableReference &var)
582 {
583         if(var.declaration)
584                 resolve(var, var.declaration->type_declaration, true);
585 }
586
587 void ExpressionResolver::visit(InterfaceBlockReference &iface)
588 {
589         if(iface.declaration)
590                 resolve(iface, iface.declaration->type_declaration, true);
591 }
592
593 void ExpressionResolver::visit(MemberAccess &memacc)
594 {
595         TraversingVisitor::visit(memacc);
596
597         if(memacc.declaration)
598                 resolve(memacc, memacc.declaration->type_declaration, memacc.left->lvalue);
599 }
600
601 void ExpressionResolver::visit(Swizzle &swizzle)
602 {
603         TraversingVisitor::visit(swizzle);
604
605         if(BasicTypeDeclaration *left_basic = dynamic_cast<BasicTypeDeclaration *>(swizzle.left->type))
606         {
607                 BasicTypeDeclaration *left_elem = get_element_type(*left_basic);
608                 if(swizzle.count==1)
609                         resolve(swizzle, left_elem, swizzle.left->lvalue);
610                 else if(left_basic->kind==BasicTypeDeclaration::VECTOR && left_elem)
611                         resolve(swizzle, find_type(*left_elem, left_basic->kind, swizzle.count), swizzle.left->lvalue);
612         }
613 }
614
615 void ExpressionResolver::visit(UnaryExpression &unary)
616 {
617         TraversingVisitor::visit(unary);
618
619         BasicTypeDeclaration *basic = dynamic_cast<BasicTypeDeclaration *>(unary.expression->type);
620         if(!basic)
621                 return;
622
623         char oper = unary.oper->token[0];
624         if(oper=='!')
625         {
626                 if(basic->kind!=BasicTypeDeclaration::BOOL)
627                         return;
628         }
629         else if(oper=='~')
630         {
631                 if(basic->kind!=BasicTypeDeclaration::INT)
632                         return;
633         }
634         else if(oper=='+' || oper=='-')
635         {
636                 BasicTypeDeclaration *elem = get_element_type(*basic);
637                 if(!elem || !is_scalar(*elem))
638                         return;
639         }
640         resolve(unary, basic, unary.expression->lvalue);
641 }
642
643 void ExpressionResolver::visit(BinaryExpression &binary, bool assign)
644 {
645         /* Binary operators are only defined for basic types (not for image or
646         structure types). */
647         BasicTypeDeclaration *basic_left = dynamic_cast<BasicTypeDeclaration *>(binary.left->type);
648         BasicTypeDeclaration *basic_right = dynamic_cast<BasicTypeDeclaration *>(binary.right->type);
649         if(!basic_left || !basic_right)
650                 return;
651
652         char oper = binary.oper->token[0];
653         if(oper=='[')
654         {
655                 /* Subscripting operates on vectors, matrices and arrays, and the right
656                 operand must be an integer. */
657                 if((!is_vector_or_matrix(*basic_left) && basic_left->kind!=BasicTypeDeclaration::ARRAY) || basic_right->kind!=BasicTypeDeclaration::INT)
658                         return;
659
660                 resolve(binary, basic_left->base_type, binary.left->lvalue);
661                 return;
662         }
663         else if(basic_left->kind==BasicTypeDeclaration::ARRAY || basic_right->kind==BasicTypeDeclaration::ARRAY)
664                 // No other binary operator can be used with arrays.
665                 return;
666
667         BasicTypeDeclaration *elem_left = get_element_type(*basic_left);
668         BasicTypeDeclaration *elem_right = get_element_type(*basic_right);
669         if(!elem_left || !elem_right)
670                 return;
671
672         Compatibility compat = get_compatibility(*basic_left, *basic_right);
673         Compatibility elem_compat = get_compatibility(*elem_left, *elem_right);
674         if(elem_compat==NOT_COMPATIBLE)
675                 return;
676         if(assign && (compat==LEFT_CONVERTIBLE || elem_compat==LEFT_CONVERTIBLE))
677                 return;
678
679         TypeDeclaration *type = 0;
680         char oper2 = binary.oper->token[1];
681         if((oper=='<' && oper2!='<') || (oper=='>' && oper2!='>'))
682         {
683                 /* Relational operators compare two scalar integer or floating-point
684                 values. */
685                 if(!is_scalar(*elem_left) || !is_scalar(*elem_right) || compat==NOT_COMPATIBLE)
686                         return;
687
688                 type = find_type(BasicTypeDeclaration::BOOL, 1);
689         }
690         else if((oper=='=' || oper=='!') && oper2=='=')
691         {
692                 // Equality comparison can be done on any compatible types.
693                 if(compat==NOT_COMPATIBLE)
694                         return;
695
696                 type = find_type(BasicTypeDeclaration::BOOL, 1);
697         }
698         else if(oper2=='&' || oper2=='|' || oper2=='^')
699         {
700                 // Logical operators can only be applied to booleans.
701                 if(basic_left->kind!=BasicTypeDeclaration::BOOL || basic_right->kind!=BasicTypeDeclaration::BOOL)
702                         return;
703
704                 type = basic_left;
705         }
706         else if((oper=='&' || oper=='|' || oper=='^' || oper=='%') && !oper2)
707         {
708                 // Bitwise operators and modulo can only be applied to integers.
709                 if(basic_left->kind!=BasicTypeDeclaration::INT || basic_right->kind!=BasicTypeDeclaration::INT)
710                         return;
711
712                 type = (compat==LEFT_CONVERTIBLE ? basic_right : basic_left);
713         }
714         else if((oper=='<' || oper=='>') && oper2==oper)
715         {
716                 // Shifts apply to integer scalars and vectors, with some restrictions.
717                 if(elem_left->kind!=BasicTypeDeclaration::INT || elem_right->kind!=BasicTypeDeclaration::INT)
718                         return;
719                 unsigned left_size = (basic_left->kind==BasicTypeDeclaration::INT ? 1 : basic_left->kind==BasicTypeDeclaration::VECTOR ? basic_left->size : 0);
720                 unsigned right_size = (basic_right->kind==BasicTypeDeclaration::INT ? 1 : basic_right->kind==BasicTypeDeclaration::VECTOR ? basic_right->size : 0);
721                 if(!left_size || (left_size==1 && right_size!=1) || (left_size>1 && right_size!=1 && right_size!=left_size))
722                         return;
723
724                 /* If the left operand is a vector and right is scalar, convert the right
725                 operand to a vector too. */
726                 if(left_size>1 && right_size==1)
727                 {
728                         BasicTypeDeclaration *vec_right = find_type(*elem_right, basic_left->kind, basic_left->size);
729                         if(!vec_right)
730                                 return;
731
732                         convert_to(binary.right, *vec_right);
733                 }
734
735                 type = basic_left;
736                 // Don't perform conversion even if the operands are of different sizes.
737                 compat = SAME_TYPE;
738         }
739         else if(oper=='+' || oper=='-' || oper=='*' || oper=='/')
740         {
741                 // Arithmetic operators require scalar elements.
742                 if(!is_scalar(*elem_left) || !is_scalar(*elem_right))
743                         return;
744
745                 if(oper=='*' && is_vector_or_matrix(*basic_left) && is_vector_or_matrix(*basic_right) &&
746                         (basic_left->kind==BasicTypeDeclaration::MATRIX || basic_right->kind==BasicTypeDeclaration::MATRIX))
747                 {
748                         /* Multiplication has special rules when at least one operand is a
749                         matrix and the other is a vector or a matrix. */
750                         unsigned left_columns = basic_left->size&0xFFFF;
751                         unsigned right_rows = basic_right->size;
752                         if(basic_right->kind==BasicTypeDeclaration::MATRIX)
753                                 right_rows >>= 16;
754                         if(left_columns!=right_rows)
755                                 return;
756
757                         BasicTypeDeclaration *elem_result = (elem_compat==LEFT_CONVERTIBLE ? elem_right : elem_left);
758
759                         if(basic_left->kind==BasicTypeDeclaration::VECTOR)
760                                 type = find_type(*elem_result, BasicTypeDeclaration::VECTOR, basic_right->size&0xFFFF);
761                         else if(basic_right->kind==BasicTypeDeclaration::VECTOR)
762                                 type = find_type(*elem_result, BasicTypeDeclaration::VECTOR, basic_left->size>>16);
763                         else
764                                 type = find_type(*elem_result, BasicTypeDeclaration::MATRIX, (basic_left->size&0xFFFF0000)|(basic_right->size&0xFFFF));
765                 }
766                 else if(compat==NOT_COMPATIBLE)
767                 {
768                         // Arithmetic between scalars and matrices or vectors is supported.
769                         if(is_scalar(*basic_left) && is_vector_or_matrix(*basic_right))
770                                 type = (elem_compat==RIGHT_CONVERTIBLE ? find_type(*elem_left, basic_right->kind, basic_right->size) : basic_right);
771                         else if(is_vector_or_matrix(*basic_left) && is_scalar(*basic_right))
772                                 type = (elem_compat==LEFT_CONVERTIBLE ? find_type(*elem_right, basic_left->kind, basic_left->size) : basic_left);
773                         else
774                                 return;
775                 }
776                 else if(compat==LEFT_CONVERTIBLE)
777                         type = basic_right;
778                 else
779                         type = basic_left;
780         }
781         else
782                 return;
783
784         if(assign && type!=basic_left)
785                 return;
786
787         bool converted = true;
788         if(compat==LEFT_CONVERTIBLE)
789                 convert_to(binary.left, *basic_right);
790         else if(compat==RIGHT_CONVERTIBLE)
791                 convert_to(binary.right, *basic_left);
792         else if(elem_compat==LEFT_CONVERTIBLE)
793                 converted = convert_to_element(binary.left, *elem_right);
794         else if(elem_compat==RIGHT_CONVERTIBLE)
795                 converted = convert_to_element(binary.right, *elem_left);
796
797         if(!converted)
798                 type = 0;
799
800         resolve(binary, type, assign);
801 }
802
803 void ExpressionResolver::visit(BinaryExpression &binary)
804 {
805         TraversingVisitor::visit(binary);
806         visit(binary, false);
807 }
808
809 void ExpressionResolver::visit(Assignment &assign)
810 {
811         TraversingVisitor::visit(assign);
812
813         if(assign.oper->token[0]!='=')
814                 return visit(assign, true);
815         else if(assign.left->type!=assign.right->type)
816         {
817                 BasicTypeDeclaration *basic_left = dynamic_cast<BasicTypeDeclaration *>(assign.left->type);
818                 BasicTypeDeclaration *basic_right = dynamic_cast<BasicTypeDeclaration *>(assign.right->type);
819                 if(!basic_left || !basic_right)
820                         return;
821
822                 Compatibility compat = get_compatibility(*basic_left, *basic_right);
823                 if(compat==RIGHT_CONVERTIBLE)
824                         convert_to(assign.right, *basic_left);
825                 else if(compat!=SAME_TYPE)
826                         return;
827         }
828
829         resolve(assign, assign.left->type, true);
830 }
831
832 void ExpressionResolver::visit(TernaryExpression &ternary)
833 {
834         TraversingVisitor::visit(ternary);
835
836         BasicTypeDeclaration *basic_cond = dynamic_cast<BasicTypeDeclaration *>(ternary.condition->type);
837         if(!basic_cond || basic_cond->kind!=BasicTypeDeclaration::BOOL)
838                 return;
839
840         TypeDeclaration *type = 0;
841         if(ternary.true_expr->type==ternary.false_expr->type)
842                 type = ternary.true_expr->type;
843         else
844         {
845                 BasicTypeDeclaration *basic_true = dynamic_cast<BasicTypeDeclaration *>(ternary.true_expr->type);
846                 BasicTypeDeclaration *basic_false = dynamic_cast<BasicTypeDeclaration *>(ternary.false_expr->type);
847                 if(!basic_true || !basic_false)
848                         return;
849
850                 Compatibility compat = get_compatibility(*basic_true, *basic_false);
851                 if(compat==NOT_COMPATIBLE)
852                         return;
853
854                 type = (compat==LEFT_CONVERTIBLE ? basic_true : basic_false);
855
856                 if(compat==LEFT_CONVERTIBLE)
857                         convert_to(ternary.true_expr, *basic_false);
858                 else if(compat==RIGHT_CONVERTIBLE)
859                         convert_to(ternary.false_expr, *basic_true);
860         }
861
862         resolve(ternary, type, false);
863 }
864
865 void ExpressionResolver::visit_constructor(FunctionCall &call)
866 {
867         if(call.arguments.empty())
868                 return;
869
870         auto i = stage->types.find(call.name);
871         if(i==stage->types.end())
872                 return;
873         else if(call.arguments.size()==1 && i->second==call.arguments[0]->type)
874                 ;
875         else if(BasicTypeDeclaration *basic = dynamic_cast<BasicTypeDeclaration *>(i->second))
876         {
877                 BasicTypeDeclaration *elem = get_element_type(*basic);
878                 if(!elem)
879                         return;
880
881                 vector<ArgumentInfo> args;
882                 args.reserve(call.arguments.size());
883                 unsigned arg_component_total = 0;
884                 bool has_matrices = false;
885                 for(const RefPtr<Expression> &a: call.arguments)
886                 {
887                         ArgumentInfo info;
888                         if(!(info.type=dynamic_cast<BasicTypeDeclaration *>(a->type)))
889                                 return;
890                         if(is_scalar(*info.type) || info.type->kind==BasicTypeDeclaration::BOOL)
891                                 info.component_count = 1;
892                         else if(info.type->kind==BasicTypeDeclaration::VECTOR)
893                                 info.component_count = info.type->size;
894                         else if(info.type->kind==BasicTypeDeclaration::MATRIX)
895                         {
896                                 info.component_count = (info.type->size>>16)*(info.type->size&0xFFFF);
897                                 has_matrices = true;
898                         }
899                         else
900                                 return;
901                         arg_component_total += info.component_count;
902                         args.push_back(info);
903                 }
904
905                 bool convert_args = false;
906                 if((is_scalar(*basic) || basic->kind==BasicTypeDeclaration::BOOL) && call.arguments.size()==1 && !has_matrices)
907                 {
908                         if(arg_component_total>1)
909                                 truncate_vector(call.arguments.front(), 1);
910
911                         /* Single-element type constructors never need to convert their
912                         arguments because the constructor *is* the conversion. */
913                 }
914                 else if(basic->kind==BasicTypeDeclaration::VECTOR && !has_matrices)
915                 {
916                         /* Vector constructors need either a single scalar argument or
917                         enough components to fill out the vector. */
918                         if(arg_component_total!=1 && arg_component_total<basic->size)
919                                 return;
920
921                         /* A vector of same size can be converted directly.  For other
922                         combinations the individual arguments need to be converted. */
923                         if(call.arguments.size()==1)
924                         {
925                                 if(arg_component_total==1)
926                                         convert_args = true;
927                                 else if(arg_component_total>basic->size)
928                                         truncate_vector(call.arguments.front(), basic->size);
929                         }
930                         else if(arg_component_total==basic->size)
931                                 convert_args = true;
932                         else
933                                 return;
934                 }
935                 else if(basic->kind==BasicTypeDeclaration::MATRIX)
936                 {
937                         unsigned column_count = basic->size&0xFFFF;
938                         unsigned row_count = basic->size>>16;
939                         if(call.arguments.size()==1)
940                         {
941                                 /* A matrix can be constructed from a single element or another
942                                 matrix of sufficient size. */
943                                 if(arg_component_total==1)
944                                         convert_args = true;
945                                 else if(args.front().type->kind==BasicTypeDeclaration::MATRIX)
946                                 {
947                                         unsigned arg_columns = args.front().type->size&0xFFFF;
948                                         unsigned arg_rows = args.front().type->size>>16;
949                                         if(arg_columns<column_count || arg_rows<row_count)
950                                                 return;
951
952                                         /* Always generate a temporary here and let the optimization
953                                         stage inline it if that's reasonable. */
954                                         RefPtr<VariableDeclaration> temporary = new VariableDeclaration;
955                                         temporary->type = args.front().type->name;
956                                         temporary->name = get_unused_variable_name(*current_block, "_temp");
957                                         temporary->init_expression = call.arguments.front();
958                                         current_block->body.insert(insert_point, temporary);
959
960                                         // Create expressions to build each column.
961                                         vector<RefPtr<Expression> > columns;
962                                         columns.reserve(column_count);
963                                         for(unsigned j=0; j<column_count; ++j)
964                                         {
965                                                 RefPtr<VariableReference> ref = new VariableReference;
966                                                 ref->name = temporary->name;
967
968                                                 RefPtr<Literal> index = new Literal;
969                                                 index->token = lexical_cast<string>(j);
970                                                 index->value = static_cast<int>(j);
971
972                                                 RefPtr<BinaryExpression> subscript = new BinaryExpression;
973                                                 subscript->left = ref;
974                                                 subscript->oper = &Operator::get_operator("[", Operator::BINARY);
975                                                 subscript->right = index;
976                                                 subscript->type = args.front().type->base_type;
977
978                                                 columns.push_back(subscript);
979                                                 if(arg_rows>row_count)
980                                                         truncate_vector(columns.back(), row_count);
981                                         }
982
983                                         call.arguments.resize(column_count);
984                                         copy(columns.begin(), columns.end(), call.arguments.begin());
985
986                                         /* Let VariableResolver process the new nodes and finish
987                                         resolving the constructor on the next pass. */
988                                         r_any_resolved = true;
989                                         return;
990                                 }
991                                 else
992                                         return;
993                         }
994                         else if(arg_component_total==column_count*row_count && !has_matrices)
995                         {
996                                 /* Construct a matrix from individual components in column-major
997                                 order.  Arguments must align at column boundaries. */
998                                 vector<RefPtr<Expression> > columns;
999                                 columns.reserve(column_count);
1000
1001                                 vector<RefPtr<Expression> > column_args;
1002                                 column_args.reserve(row_count);
1003                                 unsigned column_component_count = 0;
1004
1005                                 for(unsigned j=0; j<call.arguments.size(); ++j)
1006                                 {
1007                                         const ArgumentInfo &info = args[j];
1008                                         if(!column_component_count && info.type->kind==BasicTypeDeclaration::VECTOR && info.component_count==row_count)
1009                                                 // A vector filling the entire column can be used as is.
1010                                                 columns.push_back(call.arguments[j]);
1011                                         else
1012                                         {
1013                                                 column_args.push_back(call.arguments[j]);
1014                                                 column_component_count += info.component_count;
1015                                                 if(column_component_count==row_count)
1016                                                 {
1017                                                         /* The column has filled up.  Create a vector constructor
1018                                                         for it.*/
1019                                                         RefPtr<FunctionCall> column_call = new FunctionCall;
1020                                                         column_call->name = basic->base_type->name;
1021                                                         column_call->constructor = true;
1022                                                         column_call->arguments.resize(column_args.size());
1023                                                         copy(column_args.begin(), column_args.end(), column_call->arguments.begin());
1024                                                         column_call->type = basic->base_type;
1025                                                         visit_constructor(*column_call);
1026                                                         columns.push_back(column_call);
1027
1028                                                         column_args.clear();
1029                                                         column_component_count = 0;
1030                                                 }
1031                                                 else if(column_component_count>row_count)
1032                                                         // Argument alignment mismatch.
1033                                                         return;
1034                                         }
1035                                 }
1036                         }
1037                         else
1038                                 return;
1039                 }
1040                 else
1041                         return;
1042
1043                 if(convert_args)
1044                 {
1045                         // The argument list may have changed so can't rely on args.
1046                         for(RefPtr<Expression> &a: call.arguments)
1047                                 if(BasicTypeDeclaration *basic_arg = dynamic_cast<BasicTypeDeclaration *>(a->type))
1048                                 {
1049                                         BasicTypeDeclaration *elem_arg = get_element_type(*basic_arg);
1050                                         if(elem_arg!=elem)
1051                                                 convert_to_element(a, *elem);
1052                                 }
1053                 }
1054         }
1055         else if(StructDeclaration *strct = dynamic_cast<StructDeclaration *>(i->second))
1056         {
1057                 if(call.arguments.size()!=strct->members.body.size())
1058                         return;
1059
1060                 auto j = call.arguments.begin();
1061                 for(const RefPtr<Statement> &s: strct->members.body)
1062                 {
1063                         if(VariableDeclaration *var = dynamic_cast<VariableDeclaration *>(s.get()))
1064                         {
1065                                 if(!(*j)->type || (*j)->type!=var->type_declaration)
1066                                         return;
1067                         }
1068                         else
1069                                 return;
1070                         ++j;
1071                 }
1072         }
1073
1074         resolve(call, i->second, false);
1075 }
1076
1077 void ExpressionResolver::visit(FunctionCall &call)
1078 {
1079         TraversingVisitor::visit(call);
1080
1081         if(call.declaration)
1082                 resolve(call, call.declaration->return_type_declaration, false);
1083         else if(call.constructor)
1084                 visit_constructor(call);
1085 }
1086
1087 void ExpressionResolver::visit(BasicTypeDeclaration &type)
1088 {
1089         basic_types.push_back(&type);
1090 }
1091
1092 void ExpressionResolver::visit(VariableDeclaration &var)
1093 {
1094         TraversingVisitor::visit(var);
1095         if(!var.init_expression)
1096                 return;
1097
1098         BasicTypeDeclaration *var_basic = dynamic_cast<BasicTypeDeclaration *>(var.type_declaration);
1099         BasicTypeDeclaration *init_basic = dynamic_cast<BasicTypeDeclaration *>(var.init_expression->type);
1100         if(!var_basic || !init_basic)
1101                 return;
1102
1103         Compatibility compat = get_compatibility(*var_basic, *init_basic);
1104         if(compat==RIGHT_CONVERTIBLE)
1105                 convert_to(var.init_expression, *var_basic);
1106 }
1107
1108
1109 bool FunctionResolver::apply(Stage &s)
1110 {
1111         stage = &s;
1112         s.functions.clear();
1113         r_any_resolved = false;
1114         s.content.visit(*this);
1115         return r_any_resolved;
1116 }
1117
1118 bool FunctionResolver::can_convert_arguments(const FunctionCall &call, const FunctionDeclaration &decl)
1119 {
1120         if(decl.parameters.size()!=call.arguments.size())
1121                 return false;
1122
1123         for(unsigned j=0; j<call.arguments.size(); ++j)
1124         {
1125                 const TypeDeclaration *arg_type = call.arguments[j]->type;
1126                 const TypeDeclaration *param_type = decl.parameters[j]->type_declaration;
1127                 if(arg_type==param_type)
1128                         continue;
1129
1130                 const BasicTypeDeclaration *arg_basic = dynamic_cast<const BasicTypeDeclaration *>(arg_type);
1131                 const BasicTypeDeclaration *param_basic = dynamic_cast<const BasicTypeDeclaration *>(param_type);
1132                 if(arg_basic && param_basic && can_convert(*arg_basic, *param_basic))
1133                         continue;
1134
1135                 return false;
1136         }
1137
1138         return true;
1139 }
1140
1141 void FunctionResolver::visit(FunctionCall &call)
1142 {
1143         FunctionDeclaration *declaration = 0;
1144         if(stage->types.count(call.name))
1145                 call.constructor = true;
1146         else
1147         {
1148                 string arg_types;
1149                 bool has_signature = true;
1150                 for(auto i=call.arguments.begin(); (has_signature && i!=call.arguments.end()); ++i)
1151                 {
1152                         if((*i)->type)
1153                                 append(arg_types, ",", (*i)->type->name);
1154                         else
1155                                 has_signature = false;
1156                 }
1157
1158                 if(has_signature)
1159                 {
1160                         auto i = stage->functions.find(format("%s(%s)", call.name, arg_types));
1161                         declaration = (i!=stage->functions.end() ? i->second : 0);
1162
1163                         if(!declaration)
1164                         {
1165                                 for(i=stage->functions.lower_bound(call.name+"("); (i!=stage->functions.end() && i->second->name==call.name); ++i)
1166                                         if(can_convert_arguments(call, *i->second))
1167                                         {
1168                                                 if(declaration)
1169                                                 {
1170                                                         declaration = 0;
1171                                                         break;
1172                                                 }
1173                                                 else
1174                                                         declaration = i->second;
1175                                         }
1176                         }
1177                 }
1178         }
1179
1180         r_any_resolved |= (declaration!=call.declaration);
1181         call.declaration = declaration;
1182
1183         TraversingVisitor::visit(call);
1184 }
1185
1186 void FunctionResolver::visit(FunctionDeclaration &func)
1187 {
1188         if(func.signature.empty())
1189         {
1190                 string param_types;
1191                 for(const RefPtr<VariableDeclaration> &p: func.parameters)
1192                 {
1193                         if(p->type_declaration)
1194                                 append(param_types, ",", p->type_declaration->name);
1195                         else
1196                                 return;
1197                 }
1198                 func.signature = format("(%s)", param_types);
1199                 r_any_resolved = true;
1200         }
1201
1202         string key = func.name+func.signature;
1203         FunctionDeclaration *&stage_decl = stage->functions[key];
1204         vector<FunctionDeclaration *> &decls = declarations[key];
1205         if(func.definition==&func)
1206         {
1207                 if(stage_decl && stage_decl->definition)
1208                 {
1209                         if(!func.overrd)
1210                                 stage->diagnostics.push_back(Diagnostic(Diagnostic::WARN, func.source, func.line,
1211                                         format("Overriding function '%s' without the override keyword is deprecated", key)));
1212                         if(!stage_decl->definition->virtua)
1213                                 stage->diagnostics.push_back(Diagnostic(Diagnostic::WARN, func.source, func.line,
1214                                         format("Overriding function '%s' not declared as virtual is deprecated", key)));
1215                 }
1216                 stage_decl = &func;
1217
1218                 // Set all previous declarations to use this definition.
1219                 for(FunctionDeclaration *f: decls)
1220                 {
1221                         r_any_resolved |= (func.definition!=f->definition);
1222                         f->definition = func.definition;
1223                         f->body.body.clear();
1224                 }
1225         }
1226         else
1227         {
1228                 FunctionDeclaration *definition = (stage_decl ? stage_decl->definition : 0);
1229                 r_any_resolved |= (definition!=func.definition);
1230                 func.definition = definition;
1231
1232                 if(!stage_decl)
1233                         stage_decl = &func;
1234         }
1235         decls.push_back(&func);
1236
1237         TraversingVisitor::visit(func);
1238 }
1239
1240 } // namespace SL
1241 } // namespace GL
1242 } // namespace Msp