]> git.tdb.fi Git - libs/gl.git/blob - source/glsl/resolve.cpp
Use default member initializers for simple types
[libs/gl.git] / source / glsl / resolve.cpp
1 #include <msp/core/algorithm.h>
2 #include <msp/core/raii.h>
3 #include <msp/strings/utils.h>
4 #include "reflect.h"
5 #include "resolve.h"
6
7 using namespace std;
8
9 namespace Msp {
10 namespace GL {
11 namespace SL {
12
13 void BlockHierarchyResolver::enter(Block &block)
14 {
15         r_any_resolved |= (current_block!=block.parent);
16         block.parent = current_block;
17 }
18
19
20 bool TypeResolver::apply(Stage &s)
21 {
22         stage = &s;
23         s.types.clear();
24         r_any_resolved = false;
25         s.content.visit(*this);
26         return r_any_resolved;
27 }
28
29 TypeDeclaration *TypeResolver::get_or_create_array_type(TypeDeclaration &type)
30 {
31         auto i = array_types.find(&type);
32         if(i!=array_types.end())
33                 return i->second;
34
35         BasicTypeDeclaration *array = new BasicTypeDeclaration;
36         array->source = INTERNAL_SOURCE;
37         array->name = type.name+"[]";
38         array->kind = BasicTypeDeclaration::ARRAY;
39         array->base = type.name;
40         array->base_type = &type;
41         stage->content.body.insert(type_insert_point, array);
42         array_types[&type] = array;
43         return array;
44 }
45
46 void TypeResolver::resolve_type(TypeDeclaration *&type, const string &name, bool array)
47 {
48         TypeDeclaration *resolved = 0;
49         auto i = stage->types.find(name);
50         if(i!=stage->types.end())
51         {
52                 auto j = alias_map.find(i->second);
53                 resolved = (j!=alias_map.end() ? j->second : i->second);
54         }
55
56         if(resolved && array)
57                 resolved = get_or_create_array_type(*resolved);
58
59         r_any_resolved |= (resolved!=type);
60         type=resolved;
61 }
62
63 void TypeResolver::visit(Block &block)
64 {
65         for(auto i=block.body.begin(); i!=block.body.end(); ++i)
66         {
67                 if(!block.parent)
68                         type_insert_point = i;
69                 (*i)->visit(*this);
70         }
71 }
72
73 void TypeResolver::visit(BasicTypeDeclaration &type)
74 {
75         resolve_type(type.base_type, type.base, false);
76
77         if(type.kind==BasicTypeDeclaration::VECTOR && type.base_type)
78                 if(BasicTypeDeclaration *basic_base = dynamic_cast<BasicTypeDeclaration *>(type.base_type))
79                         if(basic_base->kind==BasicTypeDeclaration::VECTOR)
80                         {
81                                 type.kind = BasicTypeDeclaration::MATRIX;
82                                 /* A matrix's base type is its column vector type.  This will put
83                                 the column vector's size, i.e. the matrix's row count, in the high
84                                 half of the size. */
85                                 type.size |= basic_base->size<<16;
86                         }
87
88         if(type.kind==BasicTypeDeclaration::ALIAS && type.base_type)
89                 alias_map[&type] = type.base_type;
90         else if(type.kind==BasicTypeDeclaration::ARRAY && type.base_type)
91                 array_types[type.base_type] = &type;
92
93         stage->types.insert(make_pair(type.name, &type));
94 }
95
96 void TypeResolver::visit(ImageTypeDeclaration &type)
97 {
98         resolve_type(type.base_type, type.base, false);
99         stage->types.insert(make_pair(type.name, &type));
100 }
101
102 void TypeResolver::visit(StructDeclaration &strct)
103 {
104         stage->types.insert(make_pair(strct.name, &strct));
105         TraversingVisitor::visit(strct);
106 }
107
108 void TypeResolver::visit(VariableDeclaration &var)
109 {
110         resolve_type(var.type_declaration, var.type, var.array);
111         if(iface_block && var.interface==iface_block->interface)
112                 var.interface.clear();
113 }
114
115 void TypeResolver::visit(InterfaceBlock &iface)
116 {
117         if(iface.members)
118         {
119                 SetForScope<InterfaceBlock *> set_iface(iface_block, &iface);
120                 iface.members->visit(*this);
121
122                 StructDeclaration *strct = new StructDeclaration;
123                 strct->source = INTERNAL_SOURCE;
124                 strct->name = format("_%s_%s", iface.interface, iface.block_name);
125                 strct->members.body.splice(strct->members.body.begin(), iface.members->body);
126                 stage->content.body.insert(type_insert_point, strct);
127                 stage->types.insert(make_pair(strct->name, strct));
128
129                 iface.members = 0;
130                 strct->interface_block = &iface;
131                 iface.struct_declaration = strct;
132         }
133
134         TypeDeclaration *type = iface.struct_declaration;
135         if(type && iface.array)
136                 type = get_or_create_array_type(*type);
137         r_any_resolved = (type!=iface.type_declaration);
138         iface.type_declaration = type;
139 }
140
141 void TypeResolver::visit(FunctionDeclaration &func)
142 {
143         resolve_type(func.return_type_declaration, func.return_type, false);
144         TraversingVisitor::visit(func);
145 }
146
147
148 bool VariableResolver::apply(Stage &s)
149 {
150         stage = &s;
151         s.interface_blocks.clear();
152         r_any_resolved = false;
153         s.content.visit(*this);
154         for(VariableDeclaration *v: redeclared_builtins)
155                 v->source = GENERATED_SOURCE;
156         NodeRemover().apply(s, nodes_to_remove);
157         return r_any_resolved;
158 }
159
160 void VariableResolver::enter(Block &block)
161 {
162         block.variables.clear();
163 }
164
165 void VariableResolver::visit(RefPtr<Expression> &expr)
166 {
167         r_replacement_expr = 0;
168         expr->visit(*this);
169         if(r_replacement_expr)
170         {
171                 expr = r_replacement_expr;
172                 /* Don't record assignment target when doing a replacement, because chain
173                 information won't be correct. */
174                 r_assignment_target.declaration = 0;
175                 r_any_resolved = true;
176         }
177         r_replacement_expr = 0;
178 }
179
180 void VariableResolver::check_assignment_target(Statement *declaration)
181 {
182         if(record_target)
183         {
184                 if(r_assignment_target.declaration)
185                 {
186                         /* More than one reference found in assignment target.  Unable to
187                         determine what the primary target is. */
188                         record_target = false;
189                         r_assignment_target.declaration = 0;
190                 }
191                 else
192                         r_assignment_target.declaration = declaration;
193         }
194         // TODO This check is overly broad and may prevent some optimizations.
195         else if(declaration && declaration==r_assignment_target.declaration)
196                 r_self_referencing = true;
197 }
198
199 void VariableResolver::visit(VariableReference &var)
200 {
201         VariableDeclaration *declaration = 0;
202
203         /* Look for variable declarations in the block hierarchy first.  Interface
204         blocks are always defined in the top level so we can't accidentally skip
205         one. */
206         for(Block *block=current_block; (!declaration && block); block=block->parent)
207         {
208                 auto i = block->variables.find(var.name);
209                 if(i!=block->variables.end())
210                         declaration = i->second;
211         }
212
213         if(!declaration)
214         {
215                 const map<string, InterfaceBlock *> &blocks = stage->interface_blocks;
216                 auto i = blocks.find(var.name);
217                 if(i==blocks.end())
218                 {
219                         // Look for the variable in anonymous interface blocks.
220                         for(i=blocks.begin(); i!=blocks.end(); ++i)
221                                 if(i->second->instance_name.empty() && i->second->struct_declaration)
222                                         if(i->second->struct_declaration->members.variables.count(var.name))
223                                                 break;
224                 }
225
226                 if(i!=blocks.end())
227                 {
228                         /* The name refers to either an interface block with an instance name
229                         or a variable declared inside an anonymous interface block.  Prepare
230                         new syntax tree nodes accordingly. */
231                         InterfaceBlockReference *iface_ref = new InterfaceBlockReference;
232                         iface_ref->source = var.source;
233                         iface_ref->line = var.line;
234                         iface_ref->declaration = i->second;
235
236                         if(i->second->instance_name.empty())
237                         {
238                                 iface_ref->name = format("%s %s", i->second->interface, i->second->block_name);
239
240                                 MemberAccess *memacc = new MemberAccess;
241                                 memacc->source = var.source;
242                                 memacc->line = var.line;
243                                 memacc->left = iface_ref;
244                                 memacc->member = var.name;
245
246                                 r_replacement_expr = memacc;
247                         }
248                         else
249                         {
250                                 iface_ref->name = var.name;
251                                 r_replacement_expr = iface_ref;
252                         }
253                 }
254         }
255
256         r_any_resolved |= (declaration!=var.declaration);
257         var.declaration = declaration;
258
259         check_assignment_target(var.declaration);
260 }
261
262 void VariableResolver::visit(InterfaceBlockReference &iface)
263 {
264         auto i = stage->interface_blocks.find(iface.name);
265         InterfaceBlock *declaration = (i!=stage->interface_blocks.end() ? i->second : 0);
266         r_any_resolved |= (declaration!=iface.declaration);
267         iface.declaration = declaration;
268
269         check_assignment_target(iface.declaration);
270 }
271
272 void VariableResolver::visit(MemberAccess &memacc)
273 {
274         TraversingVisitor::visit(memacc);
275
276         VariableDeclaration *declaration = 0;
277         int index = -1;
278         if(StructDeclaration *strct = dynamic_cast<StructDeclaration *>(memacc.left->type))
279         {
280                 auto i = strct->members.variables.find(memacc.member);
281                 if(i!=strct->members.variables.end())
282                 {
283                         declaration = i->second;
284                         index = 0;
285                         for(auto j=strct->members.body.begin(); (j!=strct->members.body.end() && j->get()!=i->second); ++j)
286                                 ++index;
287
288                         if(record_target)
289                                 add_to_chain(r_assignment_target, Assignment::Target::MEMBER, index);
290                 }
291         }
292         else if(BasicTypeDeclaration *basic = dynamic_cast<BasicTypeDeclaration *>(memacc.left->type))
293         {
294                 bool scalar_swizzle = ((basic->kind==BasicTypeDeclaration::INT || basic->kind==BasicTypeDeclaration::FLOAT) && memacc.member.size()==1);
295                 bool vector_swizzle = (basic->kind==BasicTypeDeclaration::VECTOR && memacc.member.size()<=4);
296                 if(scalar_swizzle || vector_swizzle)
297                 {
298                         static const char component_names[] = { 'x', 'r', 's', 'y', 'g', 't', 'z', 'b', 'p', 'w', 'a', 'q' };
299
300                         bool ok = true;
301                         uint8_t components[4] = { };
302                         for(unsigned i=0; (ok && i<memacc.member.size()); ++i)
303                                 ok = ((components[i] = (std::find(component_names, component_names+12, memacc.member[i])-component_names)/3) < 4);
304
305                         if(ok)
306                         {
307                                 Swizzle *swizzle = new Swizzle;
308                                 swizzle->source = memacc.source;
309                                 swizzle->line = memacc.line;
310                                 swizzle->oper = memacc.oper;
311                                 swizzle->left = memacc.left;
312                                 swizzle->component_group = memacc.member;
313                                 swizzle->count = memacc.member.size();
314                                 copy(components, components+memacc.member.size(), swizzle->components);
315                                 r_replacement_expr = swizzle;
316                         }
317                 }
318         }
319
320         r_any_resolved |= (declaration!=memacc.declaration || index!=memacc.index);
321         memacc.declaration = declaration;
322         memacc.index = index;
323 }
324
325 void VariableResolver::visit(Swizzle &swizzle)
326 {
327         TraversingVisitor::visit(swizzle);
328
329         if(record_target)
330         {
331                 unsigned mask = 0;
332                 for(unsigned i=0; i<swizzle.count; ++i)
333                         mask |= 1<<swizzle.components[i];
334                 add_to_chain(r_assignment_target, Assignment::Target::SWIZZLE, mask);
335         }
336 }
337
338 void VariableResolver::visit(BinaryExpression &binary)
339 {
340         if(binary.oper->token[0]=='[')
341         {
342                 {
343                         /* The subscript expression is not a part of the primary assignment
344                         target. */
345                         SetFlag set(record_target, false);
346                         visit(binary.right);
347                 }
348                 visit(binary.left);
349
350                 if(record_target)
351                 {
352                         unsigned index = 0x3F;
353                         if(Literal *literal_subscript = dynamic_cast<Literal *>(binary.right.get()))
354                                 if(literal_subscript->value.check_type<int>())
355                                         index = literal_subscript->value.value<int>();
356                         add_to_chain(r_assignment_target, Assignment::Target::ARRAY, index);
357                 }
358         }
359         else
360                 TraversingVisitor::visit(binary);
361 }
362
363 void VariableResolver::visit(Assignment &assign)
364 {
365         {
366                 SetFlag set(record_target);
367                 r_assignment_target = Assignment::Target();
368                 visit(assign.left);
369                 r_any_resolved |= (r_assignment_target<assign.target || assign.target<r_assignment_target);
370                 assign.target = r_assignment_target;
371         }
372
373         r_self_referencing = false;
374         visit(assign.right);
375         assign.self_referencing = (r_self_referencing || assign.oper->token[0]!='=');
376 }
377
378 void VariableResolver::merge_layouts(Layout &to_layout, const Layout &from_layout)
379 {
380         for(const Layout::Qualifier &q: from_layout.qualifiers)
381         {
382                 auto i = find_member(to_layout.qualifiers, q.name, &Layout::Qualifier::name);
383                 if(i!=to_layout.qualifiers.end())
384                 {
385                         i->has_value = q.value;
386                         i->value = q.value;
387                 }
388                 else
389                         to_layout.qualifiers.push_back(q);
390         }
391 }
392
393 void VariableResolver::visit(VariableDeclaration &var)
394 {
395         TraversingVisitor::visit(var);
396         VariableDeclaration *&ptr = current_block->variables[var.name];
397         if(!ptr)
398                 ptr = &var;
399         else if(!current_block->parent && ptr->interface==var.interface && ptr->type==var.type)
400         {
401                 if(ptr->source==BUILTIN_SOURCE)
402                         redeclared_builtins.push_back(&var);
403                 else
404                         stage->diagnostics.push_back(Diagnostic(Diagnostic::WARN, var.source, var.line,
405                                 format("Redeclaring non-builtin variable '%s' is deprecated", var.name)));
406
407                 if(var.init_expression)
408                         ptr->init_expression = var.init_expression;
409                 if(var.layout)
410                 {
411                         if(ptr->layout)
412                                 merge_layouts(*ptr->layout, *var.layout);
413                         else
414                                 ptr->layout = var.layout;
415                 }
416                 nodes_to_remove.insert(&var);
417
418                 r_any_resolved = true;
419         }
420 }
421
422 void VariableResolver::visit(InterfaceBlock &iface)
423 {
424         /* Block names can be reused in different interfaces.  Prefix the name with
425         the first character of the interface to avoid conflicts. */
426         stage->interface_blocks.insert(make_pair(format("%s %s", iface.interface, iface.block_name), &iface));
427         if(!iface.instance_name.empty())
428                 stage->interface_blocks.insert(make_pair(iface.instance_name, &iface));
429
430         TraversingVisitor::visit(iface);
431 }
432
433
434 bool ExpressionResolver::apply(Stage &s)
435 {
436         stage = &s;
437         r_any_resolved = false;
438         s.content.visit(*this);
439         return r_any_resolved;
440 }
441
442 ExpressionResolver::Compatibility ExpressionResolver::get_compatibility(BasicTypeDeclaration &left, BasicTypeDeclaration &right)
443 {
444         if(&left==&right)
445                 return SAME_TYPE;
446         else if(can_convert(left, right))
447                 return LEFT_CONVERTIBLE;
448         else if(can_convert(right, left))
449                 return RIGHT_CONVERTIBLE;
450         else
451                 return NOT_COMPATIBLE;
452 }
453
454 BasicTypeDeclaration *ExpressionResolver::find_type(BasicTypeDeclaration::Kind kind, unsigned size, bool sign)
455 {
456         auto i = find_if(basic_types,
457                 [kind, size, sign](const BasicTypeDeclaration *t){ return t->kind==kind && t->size==size && t->sign==sign; });
458         return (i!=basic_types.end() ? *i : 0);
459 }
460
461 BasicTypeDeclaration *ExpressionResolver::find_type(BasicTypeDeclaration &elem_type, BasicTypeDeclaration::Kind kind, unsigned size)
462 {
463         auto i = find_if(basic_types,
464                 [&elem_type, kind, size](BasicTypeDeclaration *t){ return get_element_type(*t)==&elem_type && t->kind==kind && t->size==size; });
465         return (i!=basic_types.end() ? *i : 0);
466 }
467
468 void ExpressionResolver::convert_to(RefPtr<Expression> &expr, BasicTypeDeclaration &type)
469 {
470         RefPtr<FunctionCall> call = new FunctionCall;
471         call->name = type.name;
472         call->constructor = true;
473         call->arguments.push_back_nocopy(expr);
474         call->type = &type;
475         expr = call;
476 }
477
478 bool ExpressionResolver::convert_to_element(RefPtr<Expression> &expr, BasicTypeDeclaration &elem_type)
479 {
480         if(BasicTypeDeclaration *expr_basic = dynamic_cast<BasicTypeDeclaration *>(expr->type))
481         {
482                 BasicTypeDeclaration *to_type = &elem_type;
483                 if(is_vector_or_matrix(*expr_basic))
484                         to_type = find_type(elem_type, expr_basic->kind, expr_basic->size);
485                 if(to_type)
486                 {
487                         convert_to(expr, *to_type);
488                         return true;
489                 }
490         }
491
492         return false;
493 }
494
495 bool ExpressionResolver::truncate_vector(RefPtr<Expression> &expr, unsigned size)
496 {
497         if(BasicTypeDeclaration *expr_basic = dynamic_cast<BasicTypeDeclaration *>(expr->type))
498                 if(BasicTypeDeclaration *expr_elem = get_element_type(*expr_basic))
499                 {
500                         RefPtr<Swizzle> swizzle = new Swizzle;
501                         swizzle->left = expr;
502                         swizzle->oper = &Operator::get_operator(".", Operator::POSTFIX);
503                         swizzle->component_group = string("xyzw", size);
504                         swizzle->count = size;
505                         for(unsigned i=0; i<size; ++i)
506                                 swizzle->components[i] = i;
507                         if(size==1)
508                                 swizzle->type = expr_elem;
509                         else
510                                 swizzle->type = find_type(*expr_elem, BasicTypeDeclaration::VECTOR, size);
511                         expr = swizzle;
512
513                         return true;
514                 }
515
516         return false;
517 }
518
519 void ExpressionResolver::resolve(Expression &expr, TypeDeclaration *type, bool lvalue)
520 {
521         r_any_resolved |= (type!=expr.type || lvalue!=expr.lvalue);
522         expr.type = type;
523         expr.lvalue = lvalue;
524 }
525
526 void ExpressionResolver::visit(Block &block)
527 {
528         SetForScope<Block *> set_block(current_block, &block);
529         for(auto i=block.body.begin(); i!=block.body.end(); ++i)
530         {
531                 insert_point = i;
532                 (*i)->visit(*this);
533         }
534 }
535
536 void ExpressionResolver::visit(Literal &literal)
537 {
538         if(literal.value.check_type<bool>())
539                 resolve(literal, find_type(BasicTypeDeclaration::BOOL, 1), false);
540         else if(literal.value.check_type<int>())
541                 resolve(literal, find_type(BasicTypeDeclaration::INT, 32, true), false);
542         else if(literal.value.check_type<unsigned>())
543                 resolve(literal, find_type(BasicTypeDeclaration::INT, 32, false), false);
544         else if(literal.value.check_type<float>())
545                 resolve(literal, find_type(BasicTypeDeclaration::FLOAT, 32), false);
546 }
547
548 void ExpressionResolver::visit(VariableReference &var)
549 {
550         if(var.declaration)
551                 resolve(var, var.declaration->type_declaration, true);
552 }
553
554 void ExpressionResolver::visit(InterfaceBlockReference &iface)
555 {
556         if(iface.declaration)
557                 resolve(iface, iface.declaration->type_declaration, true);
558 }
559
560 void ExpressionResolver::visit(MemberAccess &memacc)
561 {
562         TraversingVisitor::visit(memacc);
563
564         if(memacc.declaration)
565                 resolve(memacc, memacc.declaration->type_declaration, memacc.left->lvalue);
566 }
567
568 void ExpressionResolver::visit(Swizzle &swizzle)
569 {
570         TraversingVisitor::visit(swizzle);
571
572         if(BasicTypeDeclaration *left_basic = dynamic_cast<BasicTypeDeclaration *>(swizzle.left->type))
573         {
574                 BasicTypeDeclaration *left_elem = get_element_type(*left_basic);
575                 if(swizzle.count==1)
576                         resolve(swizzle, left_elem, swizzle.left->lvalue);
577                 else if(left_basic->kind==BasicTypeDeclaration::VECTOR && left_elem)
578                         resolve(swizzle, find_type(*left_elem, left_basic->kind, swizzle.count), swizzle.left->lvalue);
579         }
580 }
581
582 void ExpressionResolver::visit(UnaryExpression &unary)
583 {
584         TraversingVisitor::visit(unary);
585
586         BasicTypeDeclaration *basic = dynamic_cast<BasicTypeDeclaration *>(unary.expression->type);
587         if(!basic)
588                 return;
589
590         char oper = unary.oper->token[0];
591         if(oper=='!')
592         {
593                 if(basic->kind!=BasicTypeDeclaration::BOOL)
594                         return;
595         }
596         else if(oper=='~')
597         {
598                 if(basic->kind!=BasicTypeDeclaration::INT)
599                         return;
600         }
601         else if(oper=='+' || oper=='-')
602         {
603                 BasicTypeDeclaration *elem = get_element_type(*basic);
604                 if(!elem || !is_scalar(*elem))
605                         return;
606         }
607         resolve(unary, basic, unary.expression->lvalue);
608 }
609
610 void ExpressionResolver::visit(BinaryExpression &binary, bool assign)
611 {
612         /* Binary operators are only defined for basic types (not for image or
613         structure types). */
614         BasicTypeDeclaration *basic_left = dynamic_cast<BasicTypeDeclaration *>(binary.left->type);
615         BasicTypeDeclaration *basic_right = dynamic_cast<BasicTypeDeclaration *>(binary.right->type);
616         if(!basic_left || !basic_right)
617                 return;
618
619         char oper = binary.oper->token[0];
620         if(oper=='[')
621         {
622                 /* Subscripting operates on vectors, matrices and arrays, and the right
623                 operand must be an integer. */
624                 if((!is_vector_or_matrix(*basic_left) && basic_left->kind!=BasicTypeDeclaration::ARRAY) || basic_right->kind!=BasicTypeDeclaration::INT)
625                         return;
626
627                 resolve(binary, basic_left->base_type, binary.left->lvalue);
628                 return;
629         }
630         else if(basic_left->kind==BasicTypeDeclaration::ARRAY || basic_right->kind==BasicTypeDeclaration::ARRAY)
631                 // No other binary operator can be used with arrays.
632                 return;
633
634         BasicTypeDeclaration *elem_left = get_element_type(*basic_left);
635         BasicTypeDeclaration *elem_right = get_element_type(*basic_right);
636         if(!elem_left || !elem_right)
637                 return;
638
639         Compatibility compat = get_compatibility(*basic_left, *basic_right);
640         Compatibility elem_compat = get_compatibility(*elem_left, *elem_right);
641         if(elem_compat==NOT_COMPATIBLE)
642                 return;
643         if(assign && (compat==LEFT_CONVERTIBLE || elem_compat==LEFT_CONVERTIBLE))
644                 return;
645
646         TypeDeclaration *type = 0;
647         char oper2 = binary.oper->token[1];
648         if((oper=='<' && oper2!='<') || (oper=='>' && oper2!='>'))
649         {
650                 /* Relational operators compare two scalar integer or floating-point
651                 values. */
652                 if(!is_scalar(*elem_left) || !is_scalar(*elem_right) || compat==NOT_COMPATIBLE)
653                         return;
654
655                 type = find_type(BasicTypeDeclaration::BOOL, 1);
656         }
657         else if((oper=='=' || oper=='!') && oper2=='=')
658         {
659                 // Equality comparison can be done on any compatible types.
660                 if(compat==NOT_COMPATIBLE)
661                         return;
662
663                 type = find_type(BasicTypeDeclaration::BOOL, 1);
664         }
665         else if(oper2=='&' || oper2=='|' || oper2=='^')
666         {
667                 // Logical operators can only be applied to booleans.
668                 if(basic_left->kind!=BasicTypeDeclaration::BOOL || basic_right->kind!=BasicTypeDeclaration::BOOL)
669                         return;
670
671                 type = basic_left;
672         }
673         else if((oper=='&' || oper=='|' || oper=='^' || oper=='%') && !oper2)
674         {
675                 // Bitwise operators and modulo can only be applied to integers.
676                 if(basic_left->kind!=BasicTypeDeclaration::INT || basic_right->kind!=BasicTypeDeclaration::INT)
677                         return;
678
679                 type = (compat==LEFT_CONVERTIBLE ? basic_right : basic_left);
680         }
681         else if((oper=='<' || oper=='>') && oper2==oper)
682         {
683                 // Shifts apply to integer scalars and vectors, with some restrictions.
684                 if(elem_left->kind!=BasicTypeDeclaration::INT || elem_right->kind!=BasicTypeDeclaration::INT)
685                         return;
686                 unsigned left_size = (basic_left->kind==BasicTypeDeclaration::INT ? 1 : basic_left->kind==BasicTypeDeclaration::VECTOR ? basic_left->size : 0);
687                 unsigned right_size = (basic_right->kind==BasicTypeDeclaration::INT ? 1 : basic_right->kind==BasicTypeDeclaration::VECTOR ? basic_right->size : 0);
688                 if(!left_size || (left_size==1 && right_size!=1) || (left_size>1 && right_size!=1 && right_size!=left_size))
689                         return;
690
691                 /* If the left operand is a vector and right is scalar, convert the right
692                 operand to a vector too. */
693                 if(left_size>1 && right_size==1)
694                 {
695                         BasicTypeDeclaration *vec_right = find_type(*elem_right, basic_left->kind, basic_left->size);
696                         if(!vec_right)
697                                 return;
698
699                         convert_to(binary.right, *vec_right);
700                 }
701
702                 type = basic_left;
703                 // Don't perform conversion even if the operands are of different sizes.
704                 compat = SAME_TYPE;
705         }
706         else if(oper=='+' || oper=='-' || oper=='*' || oper=='/')
707         {
708                 // Arithmetic operators require scalar elements.
709                 if(!is_scalar(*elem_left) || !is_scalar(*elem_right))
710                         return;
711
712                 if(oper=='*' && is_vector_or_matrix(*basic_left) && is_vector_or_matrix(*basic_right) &&
713                         (basic_left->kind==BasicTypeDeclaration::MATRIX || basic_right->kind==BasicTypeDeclaration::MATRIX))
714                 {
715                         /* Multiplication has special rules when at least one operand is a
716                         matrix and the other is a vector or a matrix. */
717                         unsigned left_columns = basic_left->size&0xFFFF;
718                         unsigned right_rows = basic_right->size;
719                         if(basic_right->kind==BasicTypeDeclaration::MATRIX)
720                                 right_rows >>= 16;
721                         if(left_columns!=right_rows)
722                                 return;
723
724                         BasicTypeDeclaration *elem_result = (elem_compat==LEFT_CONVERTIBLE ? elem_right : elem_left);
725
726                         if(basic_left->kind==BasicTypeDeclaration::VECTOR)
727                                 type = find_type(*elem_result, BasicTypeDeclaration::VECTOR, basic_right->size&0xFFFF);
728                         else if(basic_right->kind==BasicTypeDeclaration::VECTOR)
729                                 type = find_type(*elem_result, BasicTypeDeclaration::VECTOR, basic_left->size>>16);
730                         else
731                                 type = find_type(*elem_result, BasicTypeDeclaration::MATRIX, (basic_left->size&0xFFFF0000)|(basic_right->size&0xFFFF));
732                 }
733                 else if(compat==NOT_COMPATIBLE)
734                 {
735                         // Arithmetic between scalars and matrices or vectors is supported.
736                         if(is_scalar(*basic_left) && is_vector_or_matrix(*basic_right))
737                                 type = (elem_compat==RIGHT_CONVERTIBLE ? find_type(*elem_left, basic_right->kind, basic_right->size) : basic_right);
738                         else if(is_vector_or_matrix(*basic_left) && is_scalar(*basic_right))
739                                 type = (elem_compat==LEFT_CONVERTIBLE ? find_type(*elem_right, basic_left->kind, basic_left->size) : basic_left);
740                         else
741                                 return;
742                 }
743                 else if(compat==LEFT_CONVERTIBLE)
744                         type = basic_right;
745                 else
746                         type = basic_left;
747         }
748         else
749                 return;
750
751         if(assign && type!=basic_left)
752                 return;
753
754         bool converted = true;
755         if(compat==LEFT_CONVERTIBLE)
756                 convert_to(binary.left, *basic_right);
757         else if(compat==RIGHT_CONVERTIBLE)
758                 convert_to(binary.right, *basic_left);
759         else if(elem_compat==LEFT_CONVERTIBLE)
760                 converted = convert_to_element(binary.left, *elem_right);
761         else if(elem_compat==RIGHT_CONVERTIBLE)
762                 converted = convert_to_element(binary.right, *elem_left);
763
764         if(!converted)
765                 type = 0;
766
767         resolve(binary, type, assign);
768 }
769
770 void ExpressionResolver::visit(BinaryExpression &binary)
771 {
772         TraversingVisitor::visit(binary);
773         visit(binary, false);
774 }
775
776 void ExpressionResolver::visit(Assignment &assign)
777 {
778         TraversingVisitor::visit(assign);
779
780         if(assign.oper->token[0]!='=')
781                 return visit(assign, true);
782         else if(assign.left->type!=assign.right->type)
783         {
784                 BasicTypeDeclaration *basic_left = dynamic_cast<BasicTypeDeclaration *>(assign.left->type);
785                 BasicTypeDeclaration *basic_right = dynamic_cast<BasicTypeDeclaration *>(assign.right->type);
786                 if(!basic_left || !basic_right)
787                         return;
788
789                 Compatibility compat = get_compatibility(*basic_left, *basic_right);
790                 if(compat==RIGHT_CONVERTIBLE)
791                         convert_to(assign.right, *basic_left);
792                 else if(compat!=SAME_TYPE)
793                         return;
794         }
795
796         resolve(assign, assign.left->type, true);
797 }
798
799 void ExpressionResolver::visit(TernaryExpression &ternary)
800 {
801         TraversingVisitor::visit(ternary);
802
803         BasicTypeDeclaration *basic_cond = dynamic_cast<BasicTypeDeclaration *>(ternary.condition->type);
804         if(!basic_cond || basic_cond->kind!=BasicTypeDeclaration::BOOL)
805                 return;
806
807         TypeDeclaration *type = 0;
808         if(ternary.true_expr->type==ternary.false_expr->type)
809                 type = ternary.true_expr->type;
810         else
811         {
812                 BasicTypeDeclaration *basic_true = dynamic_cast<BasicTypeDeclaration *>(ternary.true_expr->type);
813                 BasicTypeDeclaration *basic_false = dynamic_cast<BasicTypeDeclaration *>(ternary.false_expr->type);
814                 if(!basic_true || !basic_false)
815                         return;
816
817                 Compatibility compat = get_compatibility(*basic_true, *basic_false);
818                 if(compat==NOT_COMPATIBLE)
819                         return;
820
821                 type = (compat==LEFT_CONVERTIBLE ? basic_true : basic_false);
822
823                 if(compat==LEFT_CONVERTIBLE)
824                         convert_to(ternary.true_expr, *basic_false);
825                 else if(compat==RIGHT_CONVERTIBLE)
826                         convert_to(ternary.false_expr, *basic_true);
827         }
828
829         resolve(ternary, type, false);
830 }
831
832 void ExpressionResolver::visit_constructor(FunctionCall &call)
833 {
834         if(call.arguments.empty())
835                 return;
836
837         auto i = stage->types.find(call.name);
838         if(i==stage->types.end())
839                 return;
840         else if(call.arguments.size()==1 && i->second==call.arguments[0]->type)
841                 ;
842         else if(BasicTypeDeclaration *basic = dynamic_cast<BasicTypeDeclaration *>(i->second))
843         {
844                 BasicTypeDeclaration *elem = get_element_type(*basic);
845                 if(!elem)
846                         return;
847
848                 vector<ArgumentInfo> args;
849                 args.reserve(call.arguments.size());
850                 unsigned arg_component_total = 0;
851                 bool has_matrices = false;
852                 for(const RefPtr<Expression> &a: call.arguments)
853                 {
854                         ArgumentInfo info;
855                         if(!(info.type=dynamic_cast<BasicTypeDeclaration *>(a->type)))
856                                 return;
857                         if(is_scalar(*info.type) || info.type->kind==BasicTypeDeclaration::BOOL)
858                                 info.component_count = 1;
859                         else if(info.type->kind==BasicTypeDeclaration::VECTOR)
860                                 info.component_count = info.type->size;
861                         else if(info.type->kind==BasicTypeDeclaration::MATRIX)
862                         {
863                                 info.component_count = (info.type->size>>16)*(info.type->size&0xFFFF);
864                                 has_matrices = true;
865                         }
866                         else
867                                 return;
868                         arg_component_total += info.component_count;
869                         args.push_back(info);
870                 }
871
872                 bool convert_args = false;
873                 if((is_scalar(*basic) || basic->kind==BasicTypeDeclaration::BOOL) && call.arguments.size()==1 && !has_matrices)
874                 {
875                         if(arg_component_total>1)
876                                 truncate_vector(call.arguments.front(), 1);
877
878                         /* Single-element type constructors never need to convert their
879                         arguments because the constructor *is* the conversion. */
880                 }
881                 else if(basic->kind==BasicTypeDeclaration::VECTOR && !has_matrices)
882                 {
883                         /* Vector constructors need either a single scalar argument or
884                         enough components to fill out the vector. */
885                         if(arg_component_total!=1 && arg_component_total<basic->size)
886                                 return;
887
888                         /* A vector of same size can be converted directly.  For other
889                         combinations the individual arguments need to be converted. */
890                         if(call.arguments.size()==1)
891                         {
892                                 if(arg_component_total==1)
893                                         convert_args = true;
894                                 else if(arg_component_total>basic->size)
895                                         truncate_vector(call.arguments.front(), basic->size);
896                         }
897                         else if(arg_component_total==basic->size)
898                                 convert_args = true;
899                         else
900                                 return;
901                 }
902                 else if(basic->kind==BasicTypeDeclaration::MATRIX)
903                 {
904                         unsigned column_count = basic->size&0xFFFF;
905                         unsigned row_count = basic->size>>16;
906                         if(call.arguments.size()==1)
907                         {
908                                 /* A matrix can be constructed from a single element or another
909                                 matrix of sufficient size. */
910                                 if(arg_component_total==1)
911                                         convert_args = true;
912                                 else if(args.front().type->kind==BasicTypeDeclaration::MATRIX)
913                                 {
914                                         unsigned arg_columns = args.front().type->size&0xFFFF;
915                                         unsigned arg_rows = args.front().type->size>>16;
916                                         if(arg_columns<column_count || arg_rows<row_count)
917                                                 return;
918
919                                         /* Always generate a temporary here and let the optimization
920                                         stage inline it if that's reasonable. */
921                                         RefPtr<VariableDeclaration> temporary = new VariableDeclaration;
922                                         temporary->type = args.front().type->name;
923                                         temporary->name = get_unused_variable_name(*current_block, "_temp");
924                                         temporary->init_expression = call.arguments.front();
925                                         current_block->body.insert(insert_point, temporary);
926
927                                         // Create expressions to build each column.
928                                         vector<RefPtr<Expression> > columns;
929                                         columns.reserve(column_count);
930                                         for(unsigned j=0; j<column_count; ++j)
931                                         {
932                                                 RefPtr<VariableReference> ref = new VariableReference;
933                                                 ref->name = temporary->name;
934
935                                                 RefPtr<Literal> index = new Literal;
936                                                 index->token = lexical_cast<string>(j);
937                                                 index->value = static_cast<int>(j);
938
939                                                 RefPtr<BinaryExpression> subscript = new BinaryExpression;
940                                                 subscript->left = ref;
941                                                 subscript->oper = &Operator::get_operator("[", Operator::BINARY);
942                                                 subscript->right = index;
943                                                 subscript->type = args.front().type->base_type;
944
945                                                 columns.push_back(subscript);
946                                                 if(arg_rows>row_count)
947                                                         truncate_vector(columns.back(), row_count);
948                                         }
949
950                                         call.arguments.resize(column_count);
951                                         copy(columns.begin(), columns.end(), call.arguments.begin());
952
953                                         /* Let VariableResolver process the new nodes and finish
954                                         resolving the constructor on the next pass. */
955                                         r_any_resolved = true;
956                                         return;
957                                 }
958                                 else
959                                         return;
960                         }
961                         else if(arg_component_total==column_count*row_count && !has_matrices)
962                         {
963                                 /* Construct a matrix from individual components in column-major
964                                 order.  Arguments must align at column boundaries. */
965                                 vector<RefPtr<Expression> > columns;
966                                 columns.reserve(column_count);
967
968                                 vector<RefPtr<Expression> > column_args;
969                                 column_args.reserve(row_count);
970                                 unsigned column_component_count = 0;
971
972                                 for(unsigned j=0; j<call.arguments.size(); ++j)
973                                 {
974                                         const ArgumentInfo &info = args[j];
975                                         if(!column_component_count && info.type->kind==BasicTypeDeclaration::VECTOR && info.component_count==row_count)
976                                                 // A vector filling the entire column can be used as is.
977                                                 columns.push_back(call.arguments[j]);
978                                         else
979                                         {
980                                                 column_args.push_back(call.arguments[j]);
981                                                 column_component_count += info.component_count;
982                                                 if(column_component_count==row_count)
983                                                 {
984                                                         /* The column has filled up.  Create a vector constructor
985                                                         for it.*/
986                                                         RefPtr<FunctionCall> column_call = new FunctionCall;
987                                                         column_call->name = basic->base_type->name;
988                                                         column_call->constructor = true;
989                                                         column_call->arguments.resize(column_args.size());
990                                                         copy(column_args.begin(), column_args.end(), column_call->arguments.begin());
991                                                         column_call->type = basic->base_type;
992                                                         visit_constructor(*column_call);
993                                                         columns.push_back(column_call);
994
995                                                         column_args.clear();
996                                                         column_component_count = 0;
997                                                 }
998                                                 else if(column_component_count>row_count)
999                                                         // Argument alignment mismatch.
1000                                                         return;
1001                                         }
1002                                 }
1003                         }
1004                         else
1005                                 return;
1006                 }
1007                 else
1008                         return;
1009
1010                 if(convert_args)
1011                 {
1012                         // The argument list may have changed so can't rely on args.
1013                         for(RefPtr<Expression> &a: call.arguments)
1014                                 if(BasicTypeDeclaration *basic_arg = dynamic_cast<BasicTypeDeclaration *>(a->type))
1015                                 {
1016                                         BasicTypeDeclaration *elem_arg = get_element_type(*basic_arg);
1017                                         if(elem_arg!=elem)
1018                                                 convert_to_element(a, *elem);
1019                                 }
1020                 }
1021         }
1022         else if(StructDeclaration *strct = dynamic_cast<StructDeclaration *>(i->second))
1023         {
1024                 if(call.arguments.size()!=strct->members.body.size())
1025                         return;
1026
1027                 auto j = call.arguments.begin();
1028                 for(const RefPtr<Statement> &s: strct->members.body)
1029                 {
1030                         if(VariableDeclaration *var = dynamic_cast<VariableDeclaration *>(s.get()))
1031                         {
1032                                 if(!(*j)->type || (*j)->type!=var->type_declaration)
1033                                         return;
1034                         }
1035                         else
1036                                 return;
1037                         ++j;
1038                 }
1039         }
1040
1041         resolve(call, i->second, false);
1042 }
1043
1044 void ExpressionResolver::visit(FunctionCall &call)
1045 {
1046         TraversingVisitor::visit(call);
1047
1048         if(call.declaration)
1049                 resolve(call, call.declaration->return_type_declaration, false);
1050         else if(call.constructor)
1051                 visit_constructor(call);
1052 }
1053
1054 void ExpressionResolver::visit(BasicTypeDeclaration &type)
1055 {
1056         basic_types.push_back(&type);
1057 }
1058
1059 void ExpressionResolver::visit(VariableDeclaration &var)
1060 {
1061         TraversingVisitor::visit(var);
1062         if(!var.init_expression)
1063                 return;
1064
1065         BasicTypeDeclaration *var_basic = dynamic_cast<BasicTypeDeclaration *>(var.type_declaration);
1066         BasicTypeDeclaration *init_basic = dynamic_cast<BasicTypeDeclaration *>(var.init_expression->type);
1067         if(!var_basic || !init_basic)
1068                 return;
1069
1070         Compatibility compat = get_compatibility(*var_basic, *init_basic);
1071         if(compat==RIGHT_CONVERTIBLE)
1072                 convert_to(var.init_expression, *var_basic);
1073 }
1074
1075
1076 bool FunctionResolver::apply(Stage &s)
1077 {
1078         stage = &s;
1079         s.functions.clear();
1080         r_any_resolved = false;
1081         s.content.visit(*this);
1082         return r_any_resolved;
1083 }
1084
1085 bool FunctionResolver::can_convert_arguments(const FunctionCall &call, const FunctionDeclaration &decl)
1086 {
1087         if(decl.parameters.size()!=call.arguments.size())
1088                 return false;
1089
1090         for(unsigned j=0; j<call.arguments.size(); ++j)
1091         {
1092                 const TypeDeclaration *arg_type = call.arguments[j]->type;
1093                 const TypeDeclaration *param_type = decl.parameters[j]->type_declaration;
1094                 if(arg_type==param_type)
1095                         continue;
1096
1097                 const BasicTypeDeclaration *arg_basic = dynamic_cast<const BasicTypeDeclaration *>(arg_type);
1098                 const BasicTypeDeclaration *param_basic = dynamic_cast<const BasicTypeDeclaration *>(param_type);
1099                 if(arg_basic && param_basic && can_convert(*arg_basic, *param_basic))
1100                         continue;
1101
1102                 return false;
1103         }
1104
1105         return true;
1106 }
1107
1108 void FunctionResolver::visit(FunctionCall &call)
1109 {
1110         FunctionDeclaration *declaration = 0;
1111         if(stage->types.count(call.name))
1112                 call.constructor = true;
1113         else
1114         {
1115                 string arg_types;
1116                 bool has_signature = true;
1117                 for(auto i=call.arguments.begin(); (has_signature && i!=call.arguments.end()); ++i)
1118                 {
1119                         if((*i)->type)
1120                                 append(arg_types, ",", (*i)->type->name);
1121                         else
1122                                 has_signature = false;
1123                 }
1124
1125                 if(has_signature)
1126                 {
1127                         auto i = stage->functions.find(format("%s(%s)", call.name, arg_types));
1128                         declaration = (i!=stage->functions.end() ? i->second : 0);
1129
1130                         if(!declaration)
1131                         {
1132                                 for(i=stage->functions.lower_bound(call.name+"("); (i!=stage->functions.end() && i->second->name==call.name); ++i)
1133                                         if(can_convert_arguments(call, *i->second))
1134                                         {
1135                                                 if(declaration)
1136                                                 {
1137                                                         declaration = 0;
1138                                                         break;
1139                                                 }
1140                                                 else
1141                                                         declaration = i->second;
1142                                         }
1143                         }
1144                 }
1145         }
1146
1147         r_any_resolved |= (declaration!=call.declaration);
1148         call.declaration = declaration;
1149
1150         TraversingVisitor::visit(call);
1151 }
1152
1153 void FunctionResolver::visit(FunctionDeclaration &func)
1154 {
1155         if(func.signature.empty())
1156         {
1157                 string param_types;
1158                 for(const RefPtr<VariableDeclaration> &p: func.parameters)
1159                 {
1160                         if(p->type_declaration)
1161                                 append(param_types, ",", p->type_declaration->name);
1162                         else
1163                                 return;
1164                 }
1165                 func.signature = format("(%s)", param_types);
1166                 r_any_resolved = true;
1167         }
1168
1169         string key = func.name+func.signature;
1170         FunctionDeclaration *&stage_decl = stage->functions[key];
1171         vector<FunctionDeclaration *> &decls = declarations[key];
1172         if(func.definition==&func)
1173         {
1174                 if(stage_decl && stage_decl->definition)
1175                 {
1176                         if(!func.overrd)
1177                                 stage->diagnostics.push_back(Diagnostic(Diagnostic::WARN, func.source, func.line,
1178                                         format("Overriding function '%s' without the override keyword is deprecated", key)));
1179                         if(!stage_decl->definition->virtua)
1180                                 stage->diagnostics.push_back(Diagnostic(Diagnostic::WARN, func.source, func.line,
1181                                         format("Overriding function '%s' not declared as virtual is deprecated", key)));
1182                 }
1183                 stage_decl = &func;
1184
1185                 // Set all previous declarations to use this definition.
1186                 for(FunctionDeclaration *f: decls)
1187                 {
1188                         r_any_resolved |= (func.definition!=f->definition);
1189                         f->definition = func.definition;
1190                         f->body.body.clear();
1191                 }
1192         }
1193         else
1194         {
1195                 FunctionDeclaration *definition = (stage_decl ? stage_decl->definition : 0);
1196                 r_any_resolved |= (definition!=func.definition);
1197                 func.definition = definition;
1198
1199                 if(!stage_decl)
1200                         stage_decl = &func;
1201         }
1202         decls.push_back(&func);
1203
1204         TraversingVisitor::visit(func);
1205 }
1206
1207 } // namespace SL
1208 } // namespace GL
1209 } // namespace Msp