]> git.tdb.fi Git - libs/gl.git/blob - source/glsl/optimize.cpp
Record assignment targets more precisely
[libs/gl.git] / source / glsl / optimize.cpp
1 #include <msp/core/raii.h>
2 #include <msp/strings/format.h>
3 #include "optimize.h"
4
5 using namespace std;
6
7 namespace Msp {
8 namespace GL {
9 namespace SL {
10
11 InlineableFunctionLocator::InlineableFunctionLocator():
12         current_function(0),
13         return_count(0)
14 { }
15
16 void InlineableFunctionLocator::visit(FunctionCall &call)
17 {
18         FunctionDeclaration *def = call.declaration;
19         if(def)
20                 def = def->definition;
21
22         if(def)
23         {
24                 unsigned &count = refcounts[def];
25                 ++count;
26                 /* Don't inline functions which are called more than once or are called
27                 recursively. */
28                 if(count>1 || def==current_function)
29                         inlineable.erase(def);
30         }
31
32         TraversingVisitor::visit(call);
33 }
34
35 void InlineableFunctionLocator::visit(FunctionDeclaration &func)
36 {
37         unsigned &count = refcounts[func.definition];
38         if(count<=1 && func.parameters.empty())
39                 inlineable.insert(func.definition);
40
41         SetForScope<FunctionDeclaration *> set(current_function, &func);
42         return_count = 0;
43         TraversingVisitor::visit(func);
44 }
45
46 void InlineableFunctionLocator::visit(Conditional &cond)
47 {
48         TraversingVisitor::visit(cond);
49         inlineable.erase(current_function);
50 }
51
52 void InlineableFunctionLocator::visit(Iteration &iter)
53 {
54         TraversingVisitor::visit(iter);
55         inlineable.erase(current_function);
56 }
57
58 void InlineableFunctionLocator::visit(Return &ret)
59 {
60         TraversingVisitor::visit(ret);
61         if(return_count)
62                 inlineable.erase(current_function);
63         ++return_count;
64 }
65
66
67 InlineContentInjector::InlineContentInjector():
68         source_func(0),
69         remap_names(false),
70         deps_only(false)
71 { }
72
73 const string &InlineContentInjector::apply(Stage &stage, FunctionDeclaration &target_func, Block &tgt_blk, const NodeList<Statement>::iterator &ins_pt, FunctionDeclaration &src)
74 {
75         target_block = &tgt_blk;
76         source_func = &src;
77         for(NodeList<Statement>::iterator i=src.body.body.begin(); i!=src.body.body.end(); ++i)
78         {
79                 r_inlined_statement = 0;
80                 (*i)->visit(*this);
81                 if(!r_inlined_statement)
82                         r_inlined_statement = (*i)->clone();
83
84                 SetFlag set_remap(remap_names);
85                 r_inlined_statement->visit(*this);
86                 tgt_blk.body.insert(ins_pt, r_inlined_statement);
87         }
88
89         NodeReorderer().apply(stage, target_func, dependencies);
90
91         return r_result_name;
92 }
93
94 string InlineContentInjector::create_unused_name(const string &base, bool always_prefix)
95 {
96         string result = base;
97         if(always_prefix || target_block->variables.count(result))
98                 result = format("_%s_%s", source_func->name, base);
99         unsigned initial_size = result.size();
100         for(unsigned i=1; target_block->variables.count(result); ++i)
101         {
102                 result.erase(initial_size);
103                 result += format("_%d", i);
104         }
105         return result;
106 }
107
108 void InlineContentInjector::visit(VariableReference &var)
109 {
110         if(remap_names)
111         {
112                 map<string, VariableDeclaration *>::const_iterator i = variable_map.find(var.name);
113                 if(i!=variable_map.end())
114                         var.name = i->second->name;
115         }
116         else if(var.declaration)
117         {
118                 SetFlag set_deps(deps_only);
119                 dependencies.insert(var.declaration);
120                 var.declaration->visit(*this);
121         }
122 }
123
124 void InlineContentInjector::visit(InterfaceBlockReference &iface)
125 {
126         if(!remap_names && iface.declaration)
127         {
128                 SetFlag set_deps(deps_only);
129                 dependencies.insert(iface.declaration);
130                 iface.declaration->visit(*this);
131         }
132 }
133
134 void InlineContentInjector::visit(FunctionCall &call)
135 {
136         if(!remap_names && call.declaration)
137                 dependencies.insert(call.declaration);
138         TraversingVisitor::visit(call);
139 }
140
141 void InlineContentInjector::visit(VariableDeclaration &var)
142 {
143         TraversingVisitor::visit(var);
144
145         if(var.type_declaration)
146         {
147                 SetFlag set_deps(deps_only);
148                 dependencies.insert(var.type_declaration);
149                 var.type_declaration->visit(*this);
150         }
151
152         if(!remap_names && !deps_only)
153         {
154                 RefPtr<VariableDeclaration> inlined_var = var.clone();
155                 inlined_var->name = create_unused_name(var.name, false);
156                 r_inlined_statement = inlined_var;
157
158                 variable_map[var.name] = inlined_var.get();
159         }
160 }
161
162 void InlineContentInjector::visit(Return &ret)
163 {
164         TraversingVisitor::visit(ret);
165
166         if(ret.expression)
167         {
168                 /* Create a new variable to hold the return value of the inlined
169                 function. */
170                 r_result_name = create_unused_name("return", true);
171                 RefPtr<VariableDeclaration> var = new VariableDeclaration;
172                 var->source = ret.source;
173                 var->line = ret.line;
174                 var->type = source_func->return_type;
175                 var->name = r_result_name;
176                 var->init_expression = ret.expression->clone();
177                 r_inlined_statement = var;
178         }
179 }
180
181
182 FunctionInliner::FunctionInliner():
183         current_function(0),
184         r_any_inlined(false)
185 { }
186
187 bool FunctionInliner::apply(Stage &s)
188 {
189         stage = &s;
190         inlineable = InlineableFunctionLocator().apply(s);
191         r_any_inlined = false;
192         s.content.visit(*this);
193         return r_any_inlined;
194 }
195
196 void FunctionInliner::visit_and_inline(RefPtr<Expression> &ptr)
197 {
198         r_inline_result = 0;
199         ptr->visit(*this);
200         if(r_inline_result)
201         {
202                 ptr = r_inline_result;
203                 r_any_inlined = true;
204         }
205         r_inline_result = 0;
206 }
207
208 void FunctionInliner::visit(Block &block)
209 {
210         SetForScope<Block *> set_block(current_block, &block);
211         SetForScope<NodeList<Statement>::iterator> save_insert_point(insert_point, block.body.begin());
212         for(NodeList<Statement>::iterator i=block.body.begin(); i!=block.body.end(); ++i)
213         {
214                 insert_point = i;
215                 (*i)->visit(*this);
216         }
217 }
218
219 void FunctionInliner::visit(UnaryExpression &unary)
220 {
221         visit_and_inline(unary.expression);
222 }
223
224 void FunctionInliner::visit(BinaryExpression &binary)
225 {
226         visit_and_inline(binary.left);
227         visit_and_inline(binary.right);
228 }
229
230 void FunctionInliner::visit(MemberAccess &memacc)
231 {
232         visit_and_inline(memacc.left);
233 }
234
235 void FunctionInliner::visit(Swizzle &swizzle)
236 {
237         visit_and_inline(swizzle.left);
238 }
239
240 void FunctionInliner::visit(FunctionCall &call)
241 {
242         for(NodeArray<Expression>::iterator i=call.arguments.begin(); i!=call.arguments.end(); ++i)
243                 visit_and_inline(*i);
244
245         FunctionDeclaration *def = call.declaration;
246         if(def)
247                 def = def->definition;
248
249         if(def && inlineable.count(def))
250         {
251                 string result_name = InlineContentInjector().apply(*stage, *current_function, *current_block, insert_point, *def);
252
253                 // This will later get removed by UnusedVariableRemover.
254                 if(result_name.empty())
255                         result_name = "msp_unused_from_inline";
256
257                 RefPtr<VariableReference> ref = new VariableReference;
258                 ref->name = result_name;
259                 r_inline_result = ref;
260
261                 /* Inlined variables need to be resolved before this function can be
262                 inlined further. */
263                 inlineable.erase(current_function);
264         }
265 }
266
267 void FunctionInliner::visit(ExpressionStatement &expr)
268 {
269         visit_and_inline(expr.expression);
270 }
271
272 void FunctionInliner::visit(VariableDeclaration &var)
273 {
274         if(var.init_expression)
275                 visit_and_inline(var.init_expression);
276 }
277
278 void FunctionInliner::visit(FunctionDeclaration &func)
279 {
280         SetForScope<FunctionDeclaration *> set_func(current_function, &func);
281         TraversingVisitor::visit(func);
282 }
283
284 void FunctionInliner::visit(Conditional &cond)
285 {
286         visit_and_inline(cond.condition);
287         cond.body.visit(*this);
288 }
289
290 void FunctionInliner::visit(Iteration &iter)
291 {
292         /* Visit the initialization statement before entering the loop body so the
293         inlined statements get inserted outside. */
294         if(iter.init_statement)
295                 iter.init_statement->visit(*this);
296
297         SetForScope<Block *> set_block(current_block, &iter.body);
298         /* Skip the condition and loop expression parts because they're not properly
299         inside the body block.  Inlining anything into them will require a more
300         comprehensive transformation. */
301         iter.body.visit(*this);
302 }
303
304 void FunctionInliner::visit(Return &ret)
305 {
306         if(ret.expression)
307                 visit_and_inline(ret.expression);
308 }
309
310
311 ExpressionInliner::ExpressionInfo::ExpressionInfo():
312         expression(0),
313         assign_scope(0),
314         inline_point(0),
315         inner_oper(0),
316         outer_oper(0),
317         inline_on_rhs(false),
318         trivial(false),
319         available(true)
320 { }
321
322
323 ExpressionInliner::ExpressionInliner():
324         r_ref_info(0),
325         r_any_inlined(false),
326         r_trivial(false),
327         mutating(false),
328         iteration_init(false),
329         iteration_body(0),
330         r_oper(0)
331 { }
332
333 bool ExpressionInliner::apply(Stage &s)
334 {
335         s.content.visit(*this);
336         return r_any_inlined;
337 }
338
339 void ExpressionInliner::visit_and_record(RefPtr<Expression> &ptr, const Operator *outer_oper, bool on_rhs)
340 {
341         r_ref_info = 0;
342         ptr->visit(*this);
343         if(r_ref_info && r_ref_info->expression && r_ref_info->available)
344         {
345                 if(iteration_body && !r_ref_info->trivial)
346                 {
347                         /* Don't inline non-trivial expressions which were assigned outside
348                         an iteration statement.  The iteration may run multiple times, which
349                         would cause the expression to also be evaluated multiple times. */
350                         Block *i = r_ref_info->assign_scope;
351                         for(; (i && i!=iteration_body); i=i->parent) ;
352                         if(!i)
353                                 return;
354                 }
355
356                 r_ref_info->outer_oper = outer_oper;
357                 if(r_ref_info->trivial)
358                         inline_expression(*r_ref_info->expression, ptr, outer_oper, r_ref_info->inner_oper, on_rhs);
359                 else
360                 {
361                         /* Record the inline point for a non-trivial expression but don't
362                         inline it yet.  It might turn out it shouldn't be inlined after all. */
363                         r_ref_info->inline_point = &ptr;
364                         r_ref_info->inline_on_rhs = on_rhs;
365                 }
366         }
367         r_ref_info = 0;
368 }
369
370 void ExpressionInliner::inline_expression(Expression &expr, RefPtr<Expression> &ptr, const Operator *outer_oper, const Operator *inner_oper, bool on_rhs)
371 {
372         unsigned outer_precedence = (outer_oper ? outer_oper->precedence : 20);
373         unsigned inner_precedence = (inner_oper ? inner_oper->precedence : 0);
374
375         bool needs_parentheses = (inner_precedence>=outer_precedence);
376         if(inner_oper && inner_oper==outer_oper)
377                 // Omit parentheses if the operator's natural grouping works out.
378                 needs_parentheses = (inner_oper->assoc!=Operator::ASSOCIATIVE && on_rhs!=(inner_oper->assoc==Operator::RIGHT_TO_LEFT));
379
380         if(needs_parentheses)
381         {
382                 RefPtr<ParenthesizedExpression> parexpr = new ParenthesizedExpression;
383                 parexpr->expression = expr.clone();
384                 ptr = parexpr;
385         }
386         else
387                 ptr = expr.clone();
388
389         r_any_inlined = true;
390 }
391
392 void ExpressionInliner::visit(Block &block)
393 {
394         TraversingVisitor::visit(block);
395
396         for(map<VariableDeclaration *, ExpressionInfo>::iterator i=expressions.begin(); i!=expressions.end(); )
397         {
398                 map<string, VariableDeclaration *>::iterator j = block.variables.find(i->first->name);
399                 if(j!=block.variables.end() && j->second==i->first)
400                 {
401                         if(i->second.expression && i->second.inline_point)
402                                 inline_expression(*i->second.expression, *i->second.inline_point, i->second.outer_oper, i->second.inner_oper, i->second.inline_on_rhs);
403
404                         expressions.erase(i++);
405                 }
406                 else
407                 {
408                         /* The expression was assigned in this block and may depend on local
409                         variables of the block.  If this is a conditionally executed block,
410                         the assignment might not always happen.  Mark the expression as not
411                         available to any outer blocks. */
412                         if(i->second.assign_scope==&block)
413                                 i->second.available = false;
414
415                         ++i;
416                 }
417         }
418 }
419
420 void ExpressionInliner::visit(VariableReference &var)
421 {
422         if(var.declaration)
423         {
424                 map<VariableDeclaration *, ExpressionInfo>::iterator i = expressions.find(var.declaration);
425                 if(i!=expressions.end())
426                 {
427                         /* If a non-trivial expression is referenced multiple times, don't
428                         inline it. */
429                         if(i->second.inline_point && !i->second.trivial)
430                                 i->second.expression = 0;
431                         /* Mutating expressions are analogous to self-referencing assignments
432                         and prevent inlining. */
433                         if(mutating)
434                                 i->second.expression = 0;
435                         r_ref_info = &i->second;
436                 }
437         }
438 }
439
440 void ExpressionInliner::visit(MemberAccess &memacc)
441 {
442         visit_and_record(memacc.left, memacc.oper, false);
443         r_oper = memacc.oper;
444         r_trivial = false;
445 }
446
447 void ExpressionInliner::visit(Swizzle &swizzle)
448 {
449         visit_and_record(swizzle.left, swizzle.oper, false);
450         r_oper = swizzle.oper;
451         r_trivial = false;
452 }
453
454 void ExpressionInliner::visit(UnaryExpression &unary)
455 {
456         SetFlag set_target(mutating, mutating || unary.oper->token[1]=='+' || unary.oper->token[1]=='-');
457         visit_and_record(unary.expression, unary.oper, false);
458         r_oper = unary.oper;
459         r_trivial = false;
460 }
461
462 void ExpressionInliner::visit(BinaryExpression &binary)
463 {
464         visit_and_record(binary.left, binary.oper, false);
465         {
466                 SetFlag clear_target(mutating, false);
467                 visit_and_record(binary.right, binary.oper, true);
468         }
469         r_oper = binary.oper;
470         r_trivial = false;
471 }
472
473 void ExpressionInliner::visit(Assignment &assign)
474 {
475         {
476                 SetFlag set_target(mutating);
477                 visit_and_record(assign.left, assign.oper, false);
478         }
479         r_oper = 0;
480         visit_and_record(assign.right, assign.oper, true);
481
482         if(VariableDeclaration *target_var = dynamic_cast<VariableDeclaration *>(assign.target.declaration))
483         {
484                 map<VariableDeclaration *, ExpressionInfo>::iterator i = expressions.find(target_var);
485                 if(i!=expressions.end())
486                 {
487                         /* Self-referencing assignments can't be inlined without additional
488                         work.  Just clear any previous expression. */
489                         i->second.expression = (assign.self_referencing ? 0 : assign.right.get());
490                         i->second.assign_scope = current_block;
491                         i->second.inline_point = 0;
492                         i->second.inner_oper = r_oper;
493                         i->second.available = true;
494                 }
495         }
496
497         r_oper = assign.oper;
498         r_trivial = false;
499 }
500
501 void ExpressionInliner::visit(FunctionCall &call)
502 {
503         for(NodeArray<Expression>::iterator i=call.arguments.begin(); i!=call.arguments.end(); ++i)
504                 visit_and_record(*i, 0, false);
505         r_oper = 0;
506         r_trivial = false;
507 }
508
509 void ExpressionInliner::visit(VariableDeclaration &var)
510 {
511         r_oper = 0;
512         r_trivial = true;
513         if(var.init_expression)
514                 visit_and_record(var.init_expression, 0, false);
515
516         bool constant = var.constant;
517         if(constant && var.layout)
518         {
519                 for(vector<Layout::Qualifier>::const_iterator i=var.layout->qualifiers.begin(); (constant && i!=var.layout->qualifiers.end()); ++i)
520                         constant = (i->name!="constant_id");
521         }
522
523         /* Only inline global variables if they're constant and have trivial
524         initializers.  Non-constant variables could change in ways which are hard to
525         analyze and non-trivial expressions could be expensive to inline.  */
526         if((current_block->parent || (constant && r_trivial)) && var.interface.empty())
527         {
528                 ExpressionInfo &info = expressions[&var];
529                 /* Assume variables declared in an iteration initialization statement
530                 will have their values change throughout the iteration. */
531                 info.expression = (iteration_init ? 0 : var.init_expression.get());
532                 info.assign_scope = current_block;
533                 info.inner_oper = r_oper;
534                 info.trivial = r_trivial;
535         }
536 }
537
538 void ExpressionInliner::visit(Conditional &cond)
539 {
540         visit_and_record(cond.condition, 0, false);
541         cond.body.visit(*this);
542 }
543
544 void ExpressionInliner::visit(Iteration &iter)
545 {
546         SetForScope<Block *> set_block(current_block, &iter.body);
547         if(iter.init_statement)
548         {
549                 SetFlag set_init(iteration_init);
550                 iter.init_statement->visit(*this);
551         }
552
553         SetForScope<Block *> set_body(iteration_body, &iter.body);
554         if(iter.condition)
555                 iter.condition->visit(*this);
556         iter.body.visit(*this);
557         if(iter.loop_expression)
558                 iter.loop_expression->visit(*this);
559 }
560
561 void ExpressionInliner::visit(Return &ret)
562 {
563         if(ret.expression)
564                 visit_and_record(ret.expression, 0, false);
565 }
566
567
568 void ConstantConditionEliminator::apply(Stage &stage)
569 {
570         stage.content.visit(*this);
571         NodeRemover().apply(stage, nodes_to_remove);
572 }
573
574 void ConstantConditionEliminator::visit(Block &block)
575 {
576         SetForScope<Block *> set_block(current_block, &block);
577         for(NodeList<Statement>::iterator i=block.body.begin(); i!=block.body.end(); ++i)
578         {
579                 insert_point = i;
580                 (*i)->visit(*this);
581         }
582 }
583
584 void ConstantConditionEliminator::visit(Conditional &cond)
585 {
586         ExpressionEvaluator eval;
587         cond.condition->visit(eval);
588         if(eval.is_result_valid())
589         {
590                 Block &block = (eval.get_result() ? cond.body : cond.else_body);
591                 current_block->body.splice(insert_point, block.body);
592                 nodes_to_remove.insert(&cond);
593                 return;
594         }
595
596         TraversingVisitor::visit(cond);
597 }
598
599 void ConstantConditionEliminator::visit(Iteration &iter)
600 {
601         if(iter.condition)
602         {
603                 /* If the loop condition is always false on the first iteration, the
604                 entire loop can be removed */
605                 ExpressionEvaluator::ValueMap values;
606                 if(VariableDeclaration *var = dynamic_cast<VariableDeclaration *>(iter.init_statement.get()))
607                         values[var] = var->init_expression.get();
608                 ExpressionEvaluator eval(values);
609                 iter.condition->visit(eval);
610                 if(eval.is_result_valid() && !eval.get_result())
611                 {
612                         nodes_to_remove.insert(&iter);
613                         return;
614                 }
615         }
616
617         TraversingVisitor::visit(iter);
618 }
619
620
621 UnusedVariableRemover::VariableInfo::VariableInfo():
622         local(false),
623         conditionally_assigned(false),
624         referenced(false)
625 { }
626
627
628 bool UnusedTypeRemover::apply(Stage &stage)
629 {
630         stage.content.visit(*this);
631         NodeRemover().apply(stage, unused_nodes);
632         return !unused_nodes.empty();
633 }
634
635 void UnusedTypeRemover::visit(Literal &literal)
636 {
637         unused_nodes.erase(literal.type);
638 }
639
640 void UnusedTypeRemover::visit(UnaryExpression &unary)
641 {
642         unused_nodes.erase(unary.type);
643         TraversingVisitor::visit(unary);
644 }
645
646 void UnusedTypeRemover::visit(BinaryExpression &binary)
647 {
648         unused_nodes.erase(binary.type);
649         TraversingVisitor::visit(binary);
650 }
651
652 void UnusedTypeRemover::visit(FunctionCall &call)
653 {
654         unused_nodes.erase(call.type);
655         TraversingVisitor::visit(call);
656 }
657
658 void UnusedTypeRemover::visit(BasicTypeDeclaration &type)
659 {
660         if(type.base_type)
661                 unused_nodes.erase(type.base_type);
662         unused_nodes.insert(&type);
663 }
664
665 void UnusedTypeRemover::visit(ImageTypeDeclaration &type)
666 {
667         if(type.base_type)
668                 unused_nodes.erase(type.base_type);
669         unused_nodes.insert(&type);
670 }
671
672 void UnusedTypeRemover::visit(StructDeclaration &strct)
673 {
674         unused_nodes.insert(&strct);
675         TraversingVisitor::visit(strct);
676 }
677
678 void UnusedTypeRemover::visit(VariableDeclaration &var)
679 {
680         unused_nodes.erase(var.type_declaration);
681 }
682
683 void UnusedTypeRemover::visit(InterfaceBlock &iface)
684 {
685         unused_nodes.erase(iface.type_declaration);
686 }
687
688 void UnusedTypeRemover::visit(FunctionDeclaration &func)
689 {
690         unused_nodes.erase(func.return_type_declaration);
691         TraversingVisitor::visit(func);
692 }
693
694
695 UnusedVariableRemover::UnusedVariableRemover():
696         aggregate(0),
697         r_assignment(0),
698         assignment_target(false),
699         r_assign_to_subfield(false),
700         r_side_effects(false)
701 { }
702
703 bool UnusedVariableRemover::apply(Stage &stage)
704 {
705         variables.push_back(BlockVariableMap());
706         stage.content.visit(*this);
707         BlockVariableMap &global_variables = variables.back();
708         for(BlockVariableMap::iterator i=global_variables.begin(); i!=global_variables.end(); ++i)
709         {
710                 string interface = i->first->interface;
711                 bool linked = i->first->linked_declaration;
712                 map<VariableDeclaration *, Node *>::iterator j = aggregates.find(i->first);
713                 if(j!=aggregates.end())
714                         if(InterfaceBlock *iface = dynamic_cast<InterfaceBlock *>(j->second))
715                         {
716                                 interface = iface->interface;
717                                 linked = iface->linked_block;
718                         }
719
720                 /* Don't remove output variables which are used by the next stage or the
721                 graphics API. */
722                 if(interface=="out" && (stage.type==Stage::FRAGMENT || linked || !i->first->name.compare(0, 3, "gl_")))
723                         continue;
724
725                 // Mark other unreferenced global variables as unused.
726                 if(!i->second.referenced)
727                 {
728                         unused_nodes.insert(i->first);
729                         clear_assignments(i->second, true);
730                 }
731         }
732         variables.pop_back();
733
734         NodeRemover().apply(stage, unused_nodes);
735
736         return !unused_nodes.empty();
737 }
738
739 void UnusedVariableRemover::visit(VariableReference &var)
740 {
741         map<VariableDeclaration *, Node *>::iterator i = aggregates.find(var.declaration);
742         if(i!=aggregates.end())
743                 unused_nodes.erase(i->second);
744
745         if(var.declaration && !assignment_target)
746         {
747                 VariableInfo &var_info = variables.back()[var.declaration];
748                 // Previous assignments are used by this reference.
749                 clear_assignments(var_info, false);
750                 var_info.referenced = true;
751         }
752 }
753
754 void UnusedVariableRemover::visit(InterfaceBlockReference &iface)
755 {
756         unused_nodes.erase(iface.declaration);
757 }
758
759 void UnusedVariableRemover::visit(MemberAccess &memacc)
760 {
761         if(assignment_target)
762                 r_assign_to_subfield = true;
763         TraversingVisitor::visit(memacc);
764         unused_nodes.erase(memacc.declaration);
765 }
766
767 void UnusedVariableRemover::visit(Swizzle &swizzle)
768 {
769         if(assignment_target)
770                 r_assign_to_subfield = true;
771         TraversingVisitor::visit(swizzle);
772 }
773
774 void UnusedVariableRemover::visit(UnaryExpression &unary)
775 {
776         TraversingVisitor::visit(unary);
777         if(unary.oper->token[1]=='+' || unary.oper->token[1]=='-')
778                 r_side_effects = true;
779 }
780
781 void UnusedVariableRemover::visit(BinaryExpression &binary)
782 {
783         if(binary.oper->token[0]=='[')
784         {
785                 if(assignment_target)
786                         r_assign_to_subfield = true;
787                 binary.left->visit(*this);
788                 SetFlag set(assignment_target, false);
789                 binary.right->visit(*this);
790         }
791         else
792                 TraversingVisitor::visit(binary);
793 }
794
795 void UnusedVariableRemover::visit(Assignment &assign)
796 {
797         {
798                 SetFlag set(assignment_target, !assign.self_referencing);
799                 assign.left->visit(*this);
800         }
801         assign.right->visit(*this);
802         r_assignment = &assign;
803         r_side_effects = true;
804 }
805
806 void UnusedVariableRemover::visit(FunctionCall &call)
807 {
808         TraversingVisitor::visit(call);
809         /* Treat function calls as having side effects so expression statements
810         consisting of nothing but a function call won't be optimized away. */
811         r_side_effects = true;
812 }
813
814 void UnusedVariableRemover::record_assignment(VariableDeclaration &var, Node &node, bool chained)
815 {
816         VariableInfo &var_info = variables.back()[&var];
817         /* An assignment which completely replaces the value of the variable causes
818         any previous unreferenced assignments to be unused. */
819         if(!chained)
820                 clear_assignments(var_info, true);
821         var_info.assignments.push_back(&node);
822         var_info.conditionally_assigned = false;
823 }
824
825 void UnusedVariableRemover::clear_assignments(VariableInfo &var_info, bool mark_unused)
826 {
827         if(mark_unused)
828         {
829                 for(vector<Node *>::iterator i=var_info.assignments.begin(); i!=var_info.assignments.end(); ++i)
830                         unused_nodes.insert(*i);
831         }
832         var_info.assignments.clear();
833 }
834
835 void UnusedVariableRemover::visit(ExpressionStatement &expr)
836 {
837         r_assignment = 0;
838         r_assign_to_subfield = false;
839         r_side_effects = false;
840         TraversingVisitor::visit(expr);
841         if(r_assignment && r_assignment->target.declaration)
842                 if(VariableDeclaration *target_var = dynamic_cast<VariableDeclaration *>(r_assignment->target.declaration))
843                         record_assignment(*target_var, expr, (r_assignment->self_referencing || r_assign_to_subfield));
844         if(!r_side_effects)
845                 unused_nodes.insert(&expr);
846 }
847
848 void UnusedVariableRemover::visit(StructDeclaration &strct)
849 {
850         SetForScope<Node *> set(aggregate, &strct);
851         TraversingVisitor::visit(strct);
852 }
853
854 void UnusedVariableRemover::visit(VariableDeclaration &var)
855 {
856         if(aggregate)
857                 aggregates[&var] = aggregate;
858         else
859         {
860                 variables.back()[&var].local = true;
861                 if(var.init_expression)
862                         record_assignment(var, *var.init_expression, false);
863         }
864         TraversingVisitor::visit(var);
865 }
866
867 void UnusedVariableRemover::visit(InterfaceBlock &iface)
868 {
869         SetForScope<Node *> set(aggregate, &iface);
870         unused_nodes.insert(&iface);
871         iface.struct_declaration->members.visit(*this);
872 }
873
874 void UnusedVariableRemover::visit(FunctionDeclaration &func)
875 {
876         variables.push_back(BlockVariableMap());
877
878         for(NodeArray<VariableDeclaration>::iterator i=func.parameters.begin(); i!=func.parameters.end(); ++i)
879                 (*i)->visit(*this);
880         func.body.visit(*this);
881
882         BlockVariableMap &block_variables = variables.back();
883
884         /* Mark global variables as conditionally assigned so assignments in other
885         functions won't be removed. */
886         for(BlockVariableMap::iterator i=block_variables.begin(); i!=block_variables.end(); ++i)
887                 if(!i->second.local)
888                         i->second.conditionally_assigned = true;
889
890         /* Always treat function parameters as referenced.  Removing unused
891         parameters is not currently supported. */
892         for(NodeArray<VariableDeclaration>::iterator i=func.parameters.begin(); i!=func.parameters.end(); ++i)
893                 block_variables[i->get()].referenced = true;
894
895         merge_down_variables();
896 }
897
898 void UnusedVariableRemover::merge_down_variables()
899 {
900         BlockVariableMap &parent_variables = variables[variables.size()-2];
901         BlockVariableMap &block_variables = variables.back();
902         for(BlockVariableMap::iterator i=block_variables.begin(); i!=block_variables.end(); ++i)
903         {
904                 if(i->second.local)
905                 {
906                         if(!i->second.referenced)
907                                 unused_nodes.insert(i->first);
908                         /* Any unreferenced assignments when a variable runs out of scope
909                         become unused. */
910                         clear_assignments(i->second, true);
911                         continue;
912                 }
913
914                 BlockVariableMap::iterator j = parent_variables.find(i->first);
915                 if(j==parent_variables.end())
916                         parent_variables.insert(*i);
917                 else
918                 {
919                         // Merge a non-local variable's state into the parent scope.
920                         if(i->second.referenced || !i->second.conditionally_assigned)
921                                 clear_assignments(j->second, !i->second.referenced);
922                         j->second.conditionally_assigned = i->second.conditionally_assigned;
923                         j->second.referenced |= i->second.referenced;
924                         j->second.assignments.insert(j->second.assignments.end(), i->second.assignments.begin(), i->second.assignments.end());
925                 }
926         }
927         variables.pop_back();
928 }
929
930 void UnusedVariableRemover::visit(Conditional &cond)
931 {
932         cond.condition->visit(*this);
933         variables.push_back(BlockVariableMap());
934         cond.body.visit(*this);
935
936         BlockVariableMap if_variables;
937         swap(variables.back(), if_variables);
938         cond.else_body.visit(*this);
939
940         // Combine variables from both branches.
941         BlockVariableMap &else_variables = variables.back();
942         for(BlockVariableMap::iterator i=else_variables.begin(); i!=else_variables.end(); ++i)
943         {
944                 BlockVariableMap::iterator j = if_variables.find(i->first);
945                 if(j!=if_variables.end())
946                 {
947                         // The variable was found in both branches.
948                         i->second.assignments.insert(i->second.assignments.end(), j->second.assignments.begin(), j->second.assignments.end());
949                         i->second.conditionally_assigned |= j->second.conditionally_assigned;
950                         if_variables.erase(j);
951                 }
952                 else
953                         // Mark variables found in only one branch as conditionally assigned.
954                         i->second.conditionally_assigned = true;
955         }
956
957         /* Move variables which were only used in the if block into the combined
958         block. */
959         for(BlockVariableMap::iterator i=if_variables.begin(); i!=if_variables.end(); ++i)
960         {
961                 i->second.conditionally_assigned = true;
962                 else_variables.insert(*i);
963         }
964
965         merge_down_variables();
966 }
967
968 void UnusedVariableRemover::visit(Iteration &iter)
969 {
970         variables.push_back(BlockVariableMap());
971         TraversingVisitor::visit(iter);
972         merge_down_variables();
973 }
974
975
976 bool UnusedFunctionRemover::apply(Stage &stage)
977 {
978         stage.content.visit(*this);
979         NodeRemover().apply(stage, unused_nodes);
980         return !unused_nodes.empty();
981 }
982
983 void UnusedFunctionRemover::visit(FunctionCall &call)
984 {
985         TraversingVisitor::visit(call);
986
987         unused_nodes.erase(call.declaration);
988         if(call.declaration && call.declaration->definition!=call.declaration)
989                 used_definitions.insert(call.declaration->definition);
990 }
991
992 void UnusedFunctionRemover::visit(FunctionDeclaration &func)
993 {
994         TraversingVisitor::visit(func);
995
996         if((func.name!="main" || func.body.body.empty()) && !used_definitions.count(&func))
997                 unused_nodes.insert(&func);
998 }
999
1000 } // namespace SL
1001 } // namespace GL
1002 } // namespace Msp