]> git.tdb.fi Git - libs/gl.git/blob - source/glsl/generate.cpp
Remove the ParenthesizedExpression node type
[libs/gl.git] / source / glsl / generate.cpp
1 #include <algorithm>
2 #include <msp/core/hash.h>
3 #include <msp/core/raii.h>
4 #include <msp/strings/lexicalcast.h>
5 #include <msp/strings/utils.h>
6 #include "builtin.h"
7 #include "generate.h"
8
9 using namespace std;
10
11 namespace Msp {
12 namespace GL {
13 namespace SL {
14
15 ConstantSpecializer::ConstantSpecializer():
16         values(0)
17 { }
18
19 void ConstantSpecializer::apply(Stage &stage, const map<string, int> *v)
20 {
21         values = v;
22         stage.content.visit(*this);
23 }
24
25 void ConstantSpecializer::visit(VariableDeclaration &var)
26 {
27         bool specializable = false;
28         if(var.layout)
29         {
30                 vector<Layout::Qualifier> &qualifiers = var.layout->qualifiers;
31                 for(vector<Layout::Qualifier>::iterator i=qualifiers.begin(); i!=qualifiers.end(); ++i)
32                         if(i->name=="constant_id")
33                         {
34                                 specializable = true;
35                                 if(values)
36                                         qualifiers.erase(i);
37                                 else if(i->value==-1)
38                                         i->value = hash32(var.name)&0x7FFFFFFF;
39                                 break;
40                         }
41
42                 if(qualifiers.empty())
43                         var.layout = 0;
44         }
45
46         if(specializable && values)
47         {
48                 map<string, int>::const_iterator i = values->find(var.name);
49                 if(i!=values->end())
50                 {
51                         RefPtr<Literal> literal = new Literal;
52                         if(var.type=="bool")
53                         {
54                                 literal->token = (i->second ? "true" : "false");
55                                 literal->value = static_cast<bool>(i->second);
56                         }
57                         else if(var.type=="int")
58                         {
59                                 literal->token = lexical_cast<string>(i->second);
60                                 literal->value = i->second;
61                         }
62                         var.init_expression = literal;
63                 }
64         }
65 }
66
67
68 void BlockHierarchyResolver::enter(Block &block)
69 {
70         r_any_resolved |= (current_block!=block.parent);
71         block.parent = current_block;
72 }
73
74
75 TypeResolver::TypeResolver():
76         stage(0),
77         iface_block(0),
78         r_any_resolved(false)
79 { }
80
81 bool TypeResolver::apply(Stage &s)
82 {
83         stage = &s;
84         s.types.clear();
85         r_any_resolved = false;
86         s.content.visit(*this);
87         return r_any_resolved;
88 }
89
90 TypeDeclaration *TypeResolver::get_or_create_array_type(TypeDeclaration &type)
91 {
92         map<TypeDeclaration *, TypeDeclaration *>::iterator i = array_types.find(&type);
93         if(i!=array_types.end())
94                 return i->second;
95
96         BasicTypeDeclaration *array = new BasicTypeDeclaration;
97         array->source = BUILTIN_SOURCE;
98         array->name = type.name+"[]";
99         array->kind = BasicTypeDeclaration::ARRAY;
100         array->base = type.name;
101         array->base_type = &type;
102         stage->content.body.insert(type_insert_point, array);
103         array_types[&type] = array;
104         return array;
105 }
106
107 void TypeResolver::resolve_type(TypeDeclaration *&type, const string &name, bool array)
108 {
109         TypeDeclaration *resolved = 0;
110         map<string, TypeDeclaration *>::iterator i = stage->types.find(name);
111         if(i!=stage->types.end())
112         {
113                 map<TypeDeclaration *, TypeDeclaration *>::iterator j = alias_map.find(i->second);
114                 resolved = (j!=alias_map.end() ? j->second : i->second);
115         }
116
117         if(resolved && array)
118                 resolved = get_or_create_array_type(*resolved);
119
120         r_any_resolved |= (resolved!=type);
121         type=resolved;
122 }
123
124 void TypeResolver::visit(Block &block)
125 {
126         for(NodeList<Statement>::iterator i=block.body.begin(); i!=block.body.end(); ++i)
127         {
128                 if(!block.parent)
129                         type_insert_point = i;
130                 (*i)->visit(*this);
131         }
132 }
133
134 void TypeResolver::visit(BasicTypeDeclaration &type)
135 {
136         resolve_type(type.base_type, type.base, false);
137
138         if(type.kind==BasicTypeDeclaration::VECTOR && type.base_type)
139                 if(BasicTypeDeclaration *basic_base = dynamic_cast<BasicTypeDeclaration *>(type.base_type))
140                         if(basic_base->kind==BasicTypeDeclaration::VECTOR)
141                         {
142                                 type.kind = BasicTypeDeclaration::MATRIX;
143                                 /* A matrix's base type is its column vector type.  This will put
144                                 the column vector's size, i.e. the matrix's row count, in the high
145                                 half of the size. */
146                                 type.size |= basic_base->size<<16;
147                         }
148
149         if(type.kind==BasicTypeDeclaration::ALIAS && type.base_type)
150                 alias_map[&type] = type.base_type;
151         else if(type.kind==BasicTypeDeclaration::ARRAY && type.base_type)
152                 array_types[type.base_type] = &type;
153
154         stage->types.insert(make_pair(type.name, &type));
155 }
156
157 void TypeResolver::visit(ImageTypeDeclaration &type)
158 {
159         resolve_type(type.base_type, type.base, false);
160         stage->types.insert(make_pair(type.name, &type));
161 }
162
163 void TypeResolver::visit(StructDeclaration &strct)
164 {
165         stage->types.insert(make_pair(strct.name, &strct));
166         TraversingVisitor::visit(strct);
167 }
168
169 void TypeResolver::visit(VariableDeclaration &var)
170 {
171         resolve_type(var.type_declaration, var.type, var.array);
172         if(iface_block && var.interface==iface_block->interface)
173                 var.interface.clear();
174 }
175
176 void TypeResolver::visit(InterfaceBlock &iface)
177 {
178         if(iface.members)
179         {
180                 SetForScope<InterfaceBlock *> set_iface(iface_block, &iface);
181                 iface.members->visit(*this);
182
183                 StructDeclaration *strct = new StructDeclaration;
184                 strct->source = INTERNAL_SOURCE;
185                 strct->name = format("_%s_%s", iface.interface, iface.name);
186                 strct->members.body.splice(strct->members.body.begin(), iface.members->body);
187                 stage->content.body.insert(type_insert_point, strct);
188                 stage->types.insert(make_pair(strct->name, strct));
189
190                 iface.members = 0;
191                 strct->interface_block = &iface;
192                 iface.struct_declaration = strct;
193         }
194
195         TypeDeclaration *type = iface.struct_declaration;
196         if(type && iface.array)
197                 type = get_or_create_array_type(*type);
198         r_any_resolved = (type!=iface.type_declaration);
199         iface.type_declaration = type;
200 }
201
202 void TypeResolver::visit(FunctionDeclaration &func)
203 {
204         resolve_type(func.return_type_declaration, func.return_type, false);
205         TraversingVisitor::visit(func);
206 }
207
208
209 VariableResolver::VariableResolver():
210         stage(0),
211         r_any_resolved(false),
212         record_target(false),
213         r_self_referencing(false)
214 { }
215
216 bool VariableResolver::apply(Stage &s)
217 {
218         stage = &s;
219         s.interface_blocks.clear();
220         r_any_resolved = false;
221         s.content.visit(*this);
222         for(vector<VariableDeclaration *>::const_iterator i=redeclared_builtins.begin(); i!=redeclared_builtins.end(); ++i)
223                 (*i)->source = GENERATED_SOURCE;
224         NodeRemover().apply(s, nodes_to_remove);
225         return r_any_resolved;
226 }
227
228 void VariableResolver::enter(Block &block)
229 {
230         block.variables.clear();
231 }
232
233 void VariableResolver::visit(RefPtr<Expression> &expr)
234 {
235         r_replacement_expr = 0;
236         expr->visit(*this);
237         if(r_replacement_expr)
238         {
239                 expr = r_replacement_expr;
240                 /* Don't record assignment target when doing a replacement, because chain
241                 information won't be correct. */
242                 r_assignment_target.declaration = 0;
243                 r_any_resolved = true;
244         }
245         r_replacement_expr = 0;
246 }
247
248 void VariableResolver::check_assignment_target(Statement *declaration)
249 {
250         if(record_target)
251         {
252                 if(r_assignment_target.declaration)
253                 {
254                         /* More than one reference found in assignment target.  Unable to
255                         determine what the primary target is. */
256                         record_target = false;
257                         r_assignment_target.declaration = 0;
258                 }
259                 else
260                         r_assignment_target.declaration = declaration;
261         }
262         // TODO This check is overly broad and may prevent some optimizations.
263         else if(declaration && declaration==r_assignment_target.declaration)
264                 r_self_referencing = true;
265 }
266
267 void VariableResolver::visit(VariableReference &var)
268 {
269         VariableDeclaration *declaration = 0;
270
271         /* Look for variable declarations in the block hierarchy first.  Interface
272         blocks are always defined in the top level so we can't accidentally skip
273         one. */
274         for(Block *block=current_block; (!declaration && block); block=block->parent)
275         {
276                 map<string, VariableDeclaration *>::iterator i = block->variables.find(var.name);
277                 if(i!=block->variables.end())
278                         declaration = i->second;
279         }
280
281         if(!declaration)
282         {
283                 const map<string, InterfaceBlock *> &blocks = stage->interface_blocks;
284                 map<string, InterfaceBlock *>::const_iterator i = blocks.find("_"+var.name);
285                 if(i!=blocks.end())
286                 {
287                         /* The name refers to an interface block with an instance name rather
288                         than a variable.  Prepare a new syntax tree node accordingly. */
289                         InterfaceBlockReference *iface_ref = new InterfaceBlockReference;
290                         iface_ref->source = var.source;
291                         iface_ref->line = var.line;
292                         iface_ref->name = var.name;
293                         iface_ref->declaration = i->second;
294                         r_replacement_expr = iface_ref;
295                 }
296                 else
297                 {
298                         // Look for the variable in anonymous interface blocks.
299                         for(i=blocks.begin(); (!declaration && i!=blocks.end()); ++i)
300                                 if(i->second->instance_name.empty() && i->second->struct_declaration)
301                                 {
302                                         const map<string, VariableDeclaration *> &iface_vars = i->second->struct_declaration->members.variables;
303                                         map<string, VariableDeclaration *>::const_iterator j = iface_vars.find(var.name);
304                                         if(j!=iface_vars.end())
305                                                 declaration = j->second;
306                                 }
307                 }
308         }
309
310         r_any_resolved |= (declaration!=var.declaration);
311         var.declaration = declaration;
312
313         check_assignment_target(var.declaration);
314 }
315
316 void VariableResolver::visit(InterfaceBlockReference &iface)
317 {
318         map<string, InterfaceBlock *>::iterator i = stage->interface_blocks.find("_"+iface.name);
319         InterfaceBlock *declaration = (i!=stage->interface_blocks.end() ? i->second : 0);
320         r_any_resolved |= (declaration!=iface.declaration);
321         iface.declaration = declaration;
322
323         check_assignment_target(iface.declaration);
324 }
325
326 void VariableResolver::add_to_chain(Assignment::Target::ChainType type, unsigned index)
327 {
328         if(r_assignment_target.chain_len<7)
329                 r_assignment_target.chain[r_assignment_target.chain_len] = type | min<unsigned>(index, 0x3F);
330         ++r_assignment_target.chain_len;
331 }
332
333 void VariableResolver::visit(MemberAccess &memacc)
334 {
335         TraversingVisitor::visit(memacc);
336
337         VariableDeclaration *declaration = 0;
338         if(StructDeclaration *strct = dynamic_cast<StructDeclaration *>(memacc.left->type))
339         {
340                 map<string, VariableDeclaration *>::iterator i = strct->members.variables.find(memacc.member);
341                 if(i!=strct->members.variables.end())
342                 {
343                         declaration = i->second;
344
345                         if(record_target)
346                         {
347                                 unsigned index = 0;
348                                 for(NodeList<Statement>::const_iterator j=strct->members.body.begin(); (j!=strct->members.body.end() && j->get()!=i->second); ++j)
349                                         ++index;
350
351                                 add_to_chain(Assignment::Target::MEMBER, index);
352                         }
353                 }
354         }
355         else if(BasicTypeDeclaration *basic = dynamic_cast<BasicTypeDeclaration *>(memacc.left->type))
356         {
357                 bool scalar_swizzle = ((basic->kind==BasicTypeDeclaration::INT || basic->kind==BasicTypeDeclaration::FLOAT) && memacc.member.size()==1);
358                 bool vector_swizzle = (basic->kind==BasicTypeDeclaration::VECTOR && memacc.member.size()<=4);
359                 if(scalar_swizzle || vector_swizzle)
360                 {
361                         static const char component_names[] = { 'x', 'r', 's', 'y', 'g', 't', 'z', 'b', 'p', 'w', 'a', 'q' };
362
363                         bool ok = true;
364                         UInt8 components[4] = { };
365                         for(unsigned i=0; (ok && i<memacc.member.size()); ++i)
366                                 ok = ((components[i] = (find(component_names, component_names+12, memacc.member[i])-component_names)/3) < 4);
367
368                         if(ok)
369                         {
370                                 Swizzle *swizzle = new Swizzle;
371                                 swizzle->source = memacc.source;
372                                 swizzle->line = memacc.line;
373                                 swizzle->oper = memacc.oper;
374                                 swizzle->left = memacc.left;
375                                 swizzle->component_group = memacc.member;
376                                 swizzle->count = memacc.member.size();
377                                 copy(components, components+memacc.member.size(), swizzle->components);
378                                 r_replacement_expr = swizzle;
379                         }
380                 }
381         }
382
383         r_any_resolved |= (declaration!=memacc.declaration);
384         memacc.declaration = declaration;
385 }
386
387 void VariableResolver::visit(Swizzle &swizzle)
388 {
389         TraversingVisitor::visit(swizzle);
390
391         if(record_target)
392         {
393                 unsigned mask = 0;
394                 for(unsigned i=0; i<swizzle.count; ++i)
395                         mask |= 1<<swizzle.components[i];
396                 add_to_chain(Assignment::Target::SWIZZLE, mask);
397         }
398 }
399
400 void VariableResolver::visit(BinaryExpression &binary)
401 {
402         if(binary.oper->token[0]=='[')
403         {
404                 {
405                         /* The subscript expression is not a part of the primary assignment
406                         target. */
407                         SetFlag set(record_target, false);
408                         visit(binary.right);
409                 }
410                 visit(binary.left);
411
412                 if(record_target)
413                 {
414                         unsigned index = 0x3F;
415                         if(Literal *literal_subscript = dynamic_cast<Literal *>(binary.right.get()))
416                                 if(literal_subscript->value.check_type<int>())
417                                         index = literal_subscript->value.value<int>();
418                         add_to_chain(Assignment::Target::ARRAY, index);
419                 }
420         }
421         else
422                 TraversingVisitor::visit(binary);
423 }
424
425 void VariableResolver::visit(Assignment &assign)
426 {
427         {
428                 SetFlag set(record_target);
429                 r_assignment_target = Assignment::Target();
430                 visit(assign.left);
431                 r_any_resolved |= (r_assignment_target<assign.target || assign.target<r_assignment_target);
432                 assign.target = r_assignment_target;
433         }
434
435         r_self_referencing = false;
436         visit(assign.right);
437         assign.self_referencing = (r_self_referencing || assign.oper->token[0]!='=');
438 }
439
440 void VariableResolver::merge_layouts(Layout &to_layout, const Layout &from_layout)
441 {
442         for(vector<Layout::Qualifier>::const_iterator i=from_layout.qualifiers.begin(); i!=from_layout.qualifiers.end(); ++i)
443         {
444                 bool found = false;
445                 for(vector<Layout::Qualifier>::iterator j=to_layout.qualifiers.begin(); (!found && j!=to_layout.qualifiers.end()); ++j)
446                         if(j->name==i->name)
447                         {
448                                 j->has_value = i->value;
449                                 j->value = i->value;
450                                 found = true;
451                         }
452
453                 if(!found)
454                         to_layout.qualifiers.push_back(*i);
455         }
456 }
457
458 void VariableResolver::visit(VariableDeclaration &var)
459 {
460         TraversingVisitor::visit(var);
461         VariableDeclaration *&ptr = current_block->variables[var.name];
462         if(!ptr)
463                 ptr = &var;
464         else if(!current_block->parent && ptr->interface==var.interface && ptr->type==var.type)
465         {
466                 if(ptr->source==BUILTIN_SOURCE)
467                         redeclared_builtins.push_back(&var);
468                 else
469                         stage->diagnostics.push_back(Diagnostic(Diagnostic::WARN, var.source, var.line,
470                                 format("Redeclaring non-builtin variable '%s' is deprecated", var.name)));
471
472                 if(var.init_expression)
473                         ptr->init_expression = var.init_expression;
474                 if(var.layout)
475                 {
476                         if(ptr->layout)
477                                 merge_layouts(*ptr->layout, *var.layout);
478                         else
479                                 ptr->layout = var.layout;
480                 }
481                 nodes_to_remove.insert(&var);
482
483                 r_any_resolved = true;
484         }
485 }
486
487 void VariableResolver::visit(InterfaceBlock &iface)
488 {
489         /* Block names can be reused in different interfaces.  Prefix the name with
490         the first character of the interface to avoid conflicts. */
491         stage->interface_blocks.insert(make_pair(iface.interface+iface.name, &iface));
492         if(!iface.instance_name.empty())
493                 stage->interface_blocks.insert(make_pair("_"+iface.instance_name, &iface));
494
495         TraversingVisitor::visit(iface);
496 }
497
498
499 ExpressionResolver::ExpressionResolver():
500         stage(0),
501         r_any_resolved(false)
502 { }
503
504 bool ExpressionResolver::apply(Stage &s)
505 {
506         stage = &s;
507         r_any_resolved = false;
508         s.content.visit(*this);
509         return r_any_resolved;
510 }
511
512 bool ExpressionResolver::is_scalar(BasicTypeDeclaration &type)
513 {
514         return (type.kind==BasicTypeDeclaration::INT || type.kind==BasicTypeDeclaration::FLOAT);
515 }
516
517 bool ExpressionResolver::is_vector_or_matrix(BasicTypeDeclaration &type)
518 {
519         return (type.kind==BasicTypeDeclaration::VECTOR || type.kind==BasicTypeDeclaration::MATRIX);
520 }
521
522 BasicTypeDeclaration *ExpressionResolver::get_element_type(BasicTypeDeclaration &type)
523 {
524         if(is_vector_or_matrix(type) || type.kind==BasicTypeDeclaration::ARRAY)
525         {
526                 BasicTypeDeclaration *basic_base = dynamic_cast<BasicTypeDeclaration *>(type.base_type);
527                 return (basic_base ? get_element_type(*basic_base) : 0);
528         }
529         else
530                 return &type;
531 }
532
533 bool ExpressionResolver::can_convert(BasicTypeDeclaration &from, BasicTypeDeclaration &to)
534 {
535         if(from.kind==BasicTypeDeclaration::INT && to.kind==BasicTypeDeclaration::FLOAT)
536                 return from.size<=to.size;
537         else if(from.kind!=to.kind)
538                 return false;
539         else if((from.kind==BasicTypeDeclaration::VECTOR || from.kind==BasicTypeDeclaration::MATRIX) && from.size==to.size)
540         {
541                 BasicTypeDeclaration *from_base = dynamic_cast<BasicTypeDeclaration *>(from.base_type);
542                 BasicTypeDeclaration *to_base = dynamic_cast<BasicTypeDeclaration *>(to.base_type);
543                 return (from_base && to_base && can_convert(*from_base, *to_base));
544         }
545         else
546                 return false;
547 }
548
549 ExpressionResolver::Compatibility ExpressionResolver::get_compatibility(BasicTypeDeclaration &left, BasicTypeDeclaration &right)
550 {
551         if(&left==&right)
552                 return SAME_TYPE;
553         else if(can_convert(left, right))
554                 return LEFT_CONVERTIBLE;
555         else if(can_convert(right, left))
556                 return RIGHT_CONVERTIBLE;
557         else
558                 return NOT_COMPATIBLE;
559 }
560
561 BasicTypeDeclaration *ExpressionResolver::find_type(BasicTypeDeclaration::Kind kind, unsigned size)
562 {
563         for(vector<BasicTypeDeclaration *>::const_iterator i=basic_types.begin(); i!=basic_types.end(); ++i)
564                 if((*i)->kind==kind && (*i)->size==size)
565                         return *i;
566         return 0;
567 }
568
569 BasicTypeDeclaration *ExpressionResolver::find_type(BasicTypeDeclaration &elem_type, BasicTypeDeclaration::Kind kind, unsigned size)
570 {
571         for(vector<BasicTypeDeclaration *>::const_iterator i=basic_types.begin(); i!=basic_types.end(); ++i)
572                 if(get_element_type(**i)==&elem_type && (*i)->kind==kind && (*i)->size==size)
573                         return *i;
574         return 0;
575 }
576
577 void ExpressionResolver::convert_to(RefPtr<Expression> &expr, BasicTypeDeclaration &type)
578 {
579         RefPtr<FunctionCall> call = new FunctionCall;
580         call->name = type.name;
581         call->constructor = true;
582         call->arguments.push_back(0);
583         call->arguments.back() = expr;
584         call->type = &type;
585         expr = call;
586 }
587
588 bool ExpressionResolver::convert_to_element(RefPtr<Expression> &expr, BasicTypeDeclaration &elem_type)
589 {
590         if(BasicTypeDeclaration *expr_basic = dynamic_cast<BasicTypeDeclaration *>(expr->type))
591         {
592                 BasicTypeDeclaration *to_type = &elem_type;
593                 if(is_vector_or_matrix(*expr_basic))
594                         to_type = find_type(elem_type, expr_basic->kind, expr_basic->size);
595                 if(to_type)
596                 {
597                         convert_to(expr, *to_type);
598                         return true;
599                 }
600         }
601
602         return false;
603 }
604
605 void ExpressionResolver::resolve(Expression &expr, TypeDeclaration *type, bool lvalue)
606 {
607         r_any_resolved |= (type!=expr.type || lvalue!=expr.lvalue);
608         expr.type = type;
609         expr.lvalue = lvalue;
610 }
611
612 void ExpressionResolver::visit(Literal &literal)
613 {
614         if(literal.value.check_type<bool>())
615                 resolve(literal, find_type(BasicTypeDeclaration::BOOL, 1), false);
616         else if(literal.value.check_type<int>())
617                 resolve(literal, find_type(BasicTypeDeclaration::INT, 32), false);
618         else if(literal.value.check_type<float>())
619                 resolve(literal, find_type(BasicTypeDeclaration::FLOAT, 32), false);
620 }
621
622 void ExpressionResolver::visit(VariableReference &var)
623 {
624         if(var.declaration)
625                 resolve(var, var.declaration->type_declaration, true);
626 }
627
628 void ExpressionResolver::visit(InterfaceBlockReference &iface)
629 {
630         if(iface.declaration)
631                 resolve(iface, iface.declaration->type_declaration, true);
632 }
633
634 void ExpressionResolver::visit(MemberAccess &memacc)
635 {
636         TraversingVisitor::visit(memacc);
637
638         if(memacc.declaration)
639                 resolve(memacc, memacc.declaration->type_declaration, memacc.left->lvalue);
640 }
641
642 void ExpressionResolver::visit(Swizzle &swizzle)
643 {
644         TraversingVisitor::visit(swizzle);
645
646         if(BasicTypeDeclaration *left_basic = dynamic_cast<BasicTypeDeclaration *>(swizzle.left->type))
647         {
648                 BasicTypeDeclaration *left_elem = get_element_type(*left_basic);
649                 if(swizzle.count==1)
650                         resolve(swizzle, left_elem, swizzle.left->lvalue);
651                 else if(left_basic->kind==BasicTypeDeclaration::VECTOR && left_elem)
652                         resolve(swizzle, find_type(*left_elem, left_basic->kind, swizzle.count), swizzle.left->lvalue);
653         }
654 }
655
656 void ExpressionResolver::visit(UnaryExpression &unary)
657 {
658         TraversingVisitor::visit(unary);
659
660         BasicTypeDeclaration *basic = dynamic_cast<BasicTypeDeclaration *>(unary.expression->type);
661         if(!basic)
662                 return;
663
664         char oper = unary.oper->token[0];
665         if(oper=='!')
666         {
667                 if(basic->kind!=BasicTypeDeclaration::BOOL)
668                         return;
669         }
670         else if(oper=='~')
671         {
672                 if(basic->kind!=BasicTypeDeclaration::INT)
673                         return;
674         }
675         else if(oper=='+' || oper=='-')
676         {
677                 BasicTypeDeclaration *elem = get_element_type(*basic);
678                 if(!elem || !is_scalar(*elem))
679                         return;
680         }
681         resolve(unary, basic, unary.expression->lvalue);
682 }
683
684 void ExpressionResolver::visit(BinaryExpression &binary, bool assign)
685 {
686         /* Binary operators are only defined for basic types (not for image or
687         structure types). */
688         BasicTypeDeclaration *basic_left = dynamic_cast<BasicTypeDeclaration *>(binary.left->type);
689         BasicTypeDeclaration *basic_right = dynamic_cast<BasicTypeDeclaration *>(binary.right->type);
690         if(!basic_left || !basic_right)
691                 return;
692
693         char oper = binary.oper->token[0];
694         if(oper=='[')
695         {
696                 /* Subscripting operates on vectors, matrices and arrays, and the right
697                 operand must be an integer. */
698                 if((!is_vector_or_matrix(*basic_left) && basic_left->kind!=BasicTypeDeclaration::ARRAY) || basic_right->kind!=BasicTypeDeclaration::INT)
699                         return;
700
701                 resolve(binary, basic_left->base_type, binary.left->lvalue);
702                 return;
703         }
704         else if(basic_left->kind==BasicTypeDeclaration::ARRAY || basic_right->kind==BasicTypeDeclaration::ARRAY)
705                 // No other binary operator can be used with arrays.
706                 return;
707
708         BasicTypeDeclaration *elem_left = get_element_type(*basic_left);
709         BasicTypeDeclaration *elem_right = get_element_type(*basic_right);
710         if(!elem_left || !elem_right)
711                 return;
712
713         Compatibility compat = get_compatibility(*basic_left, *basic_right);
714         Compatibility elem_compat = get_compatibility(*elem_left, *elem_right);
715         if(elem_compat==NOT_COMPATIBLE)
716                 return;
717         if(assign && (compat==LEFT_CONVERTIBLE || elem_compat==LEFT_CONVERTIBLE))
718                 return;
719
720         TypeDeclaration *type = 0;
721         char oper2 = binary.oper->token[1];
722         if((oper=='<' && oper2!='<') || (oper=='>' && oper2!='>'))
723         {
724                 /* Relational operators compare two scalar integer or floating-point
725                 values. */
726                 if(!is_scalar(*elem_left) || !is_scalar(*elem_right) || compat==NOT_COMPATIBLE)
727                         return;
728
729                 type = find_type(BasicTypeDeclaration::BOOL, 1);
730         }
731         else if((oper=='=' || oper=='!') && oper2=='=')
732         {
733                 // Equality comparison can be done on any compatible types.
734                 if(compat==NOT_COMPATIBLE)
735                         return;
736
737                 type = find_type(BasicTypeDeclaration::BOOL, 1);
738         }
739         else if(oper2=='&' || oper2=='|' || oper2=='^')
740         {
741                 // Logical operators can only be applied to booleans.
742                 if(basic_left->kind!=BasicTypeDeclaration::BOOL || basic_right->kind!=BasicTypeDeclaration::BOOL)
743                         return;
744
745                 type = basic_left;
746         }
747         else if((oper=='&' || oper=='|' || oper=='^' || oper=='%') && !oper2)
748         {
749                 // Bitwise operators and modulo can only be applied to integers.
750                 if(basic_left->kind!=BasicTypeDeclaration::INT || basic_right->kind!=BasicTypeDeclaration::INT)
751                         return;
752
753                 type = (compat==LEFT_CONVERTIBLE ? basic_right : basic_left);
754         }
755         else if((oper=='<' || oper=='>') && oper2==oper)
756         {
757                 // Shifts apply to integer scalars and vectors, with some restrictions.
758                 if(elem_left->kind!=BasicTypeDeclaration::INT || elem_right->kind!=BasicTypeDeclaration::INT)
759                         return;
760                 unsigned left_size = (basic_left->kind==BasicTypeDeclaration::INT ? 1 : basic_left->kind==BasicTypeDeclaration::VECTOR ? basic_left->size : 0);
761                 unsigned right_size = (basic_right->kind==BasicTypeDeclaration::INT ? 1 : basic_right->kind==BasicTypeDeclaration::VECTOR ? basic_right->size : 0);
762                 if(!left_size || (left_size==1 && right_size!=1) || (left_size>1 && right_size!=1 && right_size!=left_size))
763                         return;
764
765                 type = basic_left;
766                 // Don't perform conversion even if the operands are of different sizes.
767                 compat = SAME_TYPE;
768         }
769         else if(oper=='+' || oper=='-' || oper=='*' || oper=='/')
770         {
771                 // Arithmetic operators require scalar elements.
772                 if(!is_scalar(*elem_left) || !is_scalar(*elem_right))
773                         return;
774
775                 if(oper=='*' && is_vector_or_matrix(*basic_left) && is_vector_or_matrix(*basic_right) &&
776                         (basic_left->kind==BasicTypeDeclaration::MATRIX || basic_right->kind==BasicTypeDeclaration::MATRIX))
777                 {
778                         /* Multiplication has special rules when at least one operand is a
779                         matrix and the other is a vector or a matrix. */
780                         unsigned left_columns = basic_left->size&0xFFFF;
781                         unsigned right_rows = basic_right->size;
782                         if(basic_right->kind==BasicTypeDeclaration::MATRIX)
783                                 right_rows >>= 16;
784                         if(left_columns!=right_rows)
785                                 return;
786
787                         BasicTypeDeclaration *elem_result = (elem_compat==LEFT_CONVERTIBLE ? elem_right : elem_left);
788
789                         if(basic_left->kind==BasicTypeDeclaration::VECTOR)
790                                 type = find_type(*elem_result, BasicTypeDeclaration::VECTOR, basic_right->size&0xFFFF);
791                         else if(basic_right->kind==BasicTypeDeclaration::VECTOR)
792                                 type = find_type(*elem_result, BasicTypeDeclaration::VECTOR, basic_left->size>>16);
793                         else
794                                 type = find_type(*elem_result, BasicTypeDeclaration::MATRIX, (basic_left->size&0xFFFF0000)|(basic_right->size&0xFFFF));
795                 }
796                 else if(compat==NOT_COMPATIBLE)
797                 {
798                         // Arithmetic between scalars and matrices or vectors is supported.
799                         if(is_scalar(*basic_left) && is_vector_or_matrix(*basic_right))
800                                 type = (elem_compat==RIGHT_CONVERTIBLE ? find_type(*elem_left, basic_right->kind, basic_right->size) : basic_right);
801                         else if(is_vector_or_matrix(*basic_left) && is_scalar(*basic_right))
802                                 type = (elem_compat==LEFT_CONVERTIBLE ? find_type(*elem_right, basic_left->kind, basic_left->size) : basic_left);
803                         else
804                                 return;
805                 }
806                 else if(compat==LEFT_CONVERTIBLE)
807                         type = basic_right;
808                 else
809                         type = basic_left;
810         }
811         else
812                 return;
813
814         if(assign && type!=basic_left)
815                 return;
816
817         bool converted = true;
818         if(compat==LEFT_CONVERTIBLE)
819                 convert_to(binary.left, *basic_right);
820         else if(compat==RIGHT_CONVERTIBLE)
821                 convert_to(binary.right, *basic_left);
822         else if(elem_compat==LEFT_CONVERTIBLE)
823                 converted = convert_to_element(binary.left, *elem_right);
824         else if(elem_compat==RIGHT_CONVERTIBLE)
825                 converted = convert_to_element(binary.right, *elem_left);
826
827         if(!converted)
828                 type = 0;
829
830         resolve(binary, type, assign);
831 }
832
833 void ExpressionResolver::visit(BinaryExpression &binary)
834 {
835         TraversingVisitor::visit(binary);
836         visit(binary, false);
837 }
838
839 void ExpressionResolver::visit(Assignment &assign)
840 {
841         TraversingVisitor::visit(assign);
842
843         if(assign.oper->token[0]!='=')
844                 return visit(assign, true);
845         else if(assign.left->type!=assign.right->type)
846         {
847                 BasicTypeDeclaration *basic_left = dynamic_cast<BasicTypeDeclaration *>(assign.left->type);
848                 BasicTypeDeclaration *basic_right = dynamic_cast<BasicTypeDeclaration *>(assign.right->type);
849                 if(!basic_left || !basic_right)
850                         return;
851
852                 Compatibility compat = get_compatibility(*basic_left, *basic_right);
853                 if(compat==RIGHT_CONVERTIBLE)
854                         convert_to(assign.right, *basic_left);
855                 else if(compat!=SAME_TYPE)
856                         return;
857         }
858
859         resolve(assign, assign.left->type, true);
860 }
861
862 void ExpressionResolver::visit(TernaryExpression &ternary)
863 {
864         TraversingVisitor::visit(ternary);
865
866         BasicTypeDeclaration *basic_cond = dynamic_cast<BasicTypeDeclaration *>(ternary.condition->type);
867         if(!basic_cond || basic_cond->kind!=BasicTypeDeclaration::BOOL)
868                 return;
869
870         TypeDeclaration *type = 0;
871         if(ternary.true_expr->type==ternary.false_expr->type)
872                 type = ternary.true_expr->type;
873         else
874         {
875                 BasicTypeDeclaration *basic_true = dynamic_cast<BasicTypeDeclaration *>(ternary.true_expr->type);
876                 BasicTypeDeclaration *basic_false = dynamic_cast<BasicTypeDeclaration *>(ternary.false_expr->type);
877                 Compatibility compat = get_compatibility(*basic_true, *basic_false);
878                 if(compat==NOT_COMPATIBLE)
879                         return;
880
881                 type = (compat==LEFT_CONVERTIBLE ? basic_true : basic_false);
882
883                 if(compat==LEFT_CONVERTIBLE)
884                         convert_to(ternary.true_expr, *basic_false);
885                 else if(compat==RIGHT_CONVERTIBLE)
886                         convert_to(ternary.false_expr, *basic_true);
887         }
888
889         resolve(ternary, type, false);
890 }
891
892 void ExpressionResolver::visit(FunctionCall &call)
893 {
894         TraversingVisitor::visit(call);
895
896         TypeDeclaration *type = 0;
897         if(call.declaration)
898                 type = call.declaration->return_type_declaration;
899         else if(call.constructor)
900         {
901                 map<string, TypeDeclaration *>::const_iterator i=stage->types.find(call.name);
902                 type = (i!=stage->types.end() ? i->second : 0);
903         }
904         resolve(call, type, false);
905 }
906
907 void ExpressionResolver::visit(BasicTypeDeclaration &type)
908 {
909         basic_types.push_back(&type);
910 }
911
912 void ExpressionResolver::visit(VariableDeclaration &var)
913 {
914         TraversingVisitor::visit(var);
915         if(!var.init_expression)
916                 return;
917
918         BasicTypeDeclaration *var_basic = dynamic_cast<BasicTypeDeclaration *>(var.type_declaration);
919         BasicTypeDeclaration *init_basic = dynamic_cast<BasicTypeDeclaration *>(var.init_expression->type);
920         if(!var_basic || !init_basic)
921                 return;
922
923         Compatibility compat = get_compatibility(*var_basic, *init_basic);
924         if(compat==RIGHT_CONVERTIBLE)
925                 convert_to(var.init_expression, *var_basic);
926 }
927
928
929 bool FunctionResolver::apply(Stage &s)
930 {
931         stage = &s;
932         s.functions.clear();
933         r_any_resolved = false;
934         s.content.visit(*this);
935         return r_any_resolved;
936 }
937
938 void FunctionResolver::visit(FunctionCall &call)
939 {
940         string arg_types;
941         bool has_signature = true;
942         for(NodeArray<Expression>::const_iterator i=call.arguments.begin(); (has_signature && i!=call.arguments.end()); ++i)
943         {
944                 if((*i)->type)
945                         append(arg_types, ",", (*i)->type->name);
946                 else
947                         has_signature = false;
948         }
949
950         FunctionDeclaration *declaration = 0;
951         if(has_signature)
952         {
953                 map<string, FunctionDeclaration *>::iterator i = stage->functions.find(format("%s(%s)", call.name, arg_types));
954                 declaration = (i!=stage->functions.end() ? i->second : 0);
955         }
956         r_any_resolved |= (declaration!=call.declaration);
957         call.declaration = declaration;
958
959         TraversingVisitor::visit(call);
960 }
961
962 void FunctionResolver::visit(FunctionDeclaration &func)
963 {
964         if(func.signature.empty())
965         {
966                 string param_types;
967                 for(NodeArray<VariableDeclaration>::const_iterator i=func.parameters.begin(); i!=func.parameters.end(); ++i)
968                 {
969                         if((*i)->type_declaration)
970                                 append(param_types, ",", (*i)->type_declaration->name);
971                         else
972                                 return;
973                 }
974                 func.signature = format("(%s)", param_types);
975                 r_any_resolved = true;
976         }
977
978         string key = func.name+func.signature;
979         FunctionDeclaration *&stage_decl = stage->functions[key];
980         vector<FunctionDeclaration *> &decls = declarations[key];
981         if(func.definition==&func)
982         {
983                 if(stage_decl && stage_decl->definition)
984                 {
985                         if(!func.overrd)
986                                 stage->diagnostics.push_back(Diagnostic(Diagnostic::WARN, func.source, func.line,
987                                         format("Overriding function '%s' without the override keyword is deprecated", key)));
988                         if(!stage_decl->definition->virtua)
989                                 stage->diagnostics.push_back(Diagnostic(Diagnostic::WARN, func.source, func.line,
990                                         format("Overriding function '%s' not declared as virtual is deprecated", key)));
991                 }
992                 stage_decl = &func;
993
994                 // Set all previous declarations to use this definition.
995                 for(vector<FunctionDeclaration *>::iterator i=decls.begin(); i!=decls.end(); ++i)
996                 {
997                         r_any_resolved |= (func.definition!=(*i)->definition);
998                         (*i)->definition = func.definition;
999                         (*i)->body.body.clear();
1000                 }
1001         }
1002         else
1003         {
1004                 FunctionDeclaration *definition = (stage_decl ? stage_decl->definition : 0);
1005                 r_any_resolved |= (definition!=func.definition);
1006                 func.definition = definition;
1007
1008                 if(!stage_decl)
1009                         stage_decl = &func;
1010         }
1011         decls.push_back(&func);
1012
1013         TraversingVisitor::visit(func);
1014 }
1015
1016
1017 InterfaceGenerator::InterfaceGenerator():
1018         stage(0),
1019         function_scope(false),
1020         copy_block(false),
1021         iface_target_block(0)
1022 { }
1023
1024 string InterfaceGenerator::get_out_prefix(Stage::Type type)
1025 {
1026         if(type==Stage::VERTEX)
1027                 return "_vs_out_";
1028         else if(type==Stage::GEOMETRY)
1029                 return "_gs_out_";
1030         else
1031                 return string();
1032 }
1033
1034 void InterfaceGenerator::apply(Stage &s)
1035 {
1036         stage = &s;
1037         iface_target_block = &stage->content;
1038         if(stage->previous)
1039                 in_prefix = get_out_prefix(stage->previous->type);
1040         out_prefix = get_out_prefix(stage->type);
1041         s.content.visit(*this);
1042         NodeRemover().apply(s, nodes_to_remove);
1043 }
1044
1045 void InterfaceGenerator::visit(Block &block)
1046 {
1047         SetForScope<Block *> set_block(current_block, &block);
1048         for(NodeList<Statement>::iterator i=block.body.begin(); i!=block.body.end(); ++i)
1049         {
1050                 assignment_insert_point = i;
1051                 if(&block==&stage->content)
1052                         iface_insert_point = i;
1053
1054                 (*i)->visit(*this);
1055         }
1056 }
1057
1058 string InterfaceGenerator::change_prefix(const string &name, const string &prefix) const
1059 {
1060         unsigned offset = (name.compare(0, in_prefix.size(), in_prefix) ? 0 : in_prefix.size());
1061         return prefix+name.substr(offset);
1062 }
1063
1064 VariableDeclaration *InterfaceGenerator::generate_interface(VariableDeclaration &var, const string &iface, const string &name)
1065 {
1066         if(stage->content.variables.count(name))
1067                 return 0;
1068
1069         if(stage->type==Stage::GEOMETRY && !copy_block && var.interface=="out" && var.array)
1070                 return 0;
1071
1072         VariableDeclaration* iface_var = new VariableDeclaration;
1073         iface_var->sampling = var.sampling;
1074         iface_var->interface = iface;
1075         iface_var->type = var.type;
1076         iface_var->name = name;
1077         /* Geometry shader inputs are always arrays.  But if we're bringing in an
1078         entire block, the array is on the block and not individual variables. */
1079         if(stage->type==Stage::GEOMETRY && !copy_block)
1080                 iface_var->array = ((var.array && var.interface!="in") || iface=="in");
1081         else
1082                 iface_var->array = var.array;
1083         if(iface_var->array)
1084                 iface_var->array_size = var.array_size;
1085         if(iface=="in")
1086         {
1087                 iface_var->layout = var.layout;
1088                 iface_var->linked_declaration = &var;
1089                 var.linked_declaration = iface_var;
1090         }
1091
1092         iface_target_block->body.insert(iface_insert_point, iface_var);
1093         iface_target_block->variables.insert(make_pair(name, iface_var));
1094         if(iface_target_block==&stage->content && iface=="in")
1095                 declared_inputs.push_back(iface_var);
1096
1097         return iface_var;
1098 }
1099
1100 InterfaceBlock *InterfaceGenerator::generate_interface(InterfaceBlock &out_block)
1101 {
1102         if(stage->interface_blocks.count("in"+out_block.name))
1103                 return 0;
1104
1105         InterfaceBlock *in_block = new InterfaceBlock;
1106         in_block->interface = "in";
1107         in_block->name = out_block.name;
1108         in_block->members = new Block;
1109         in_block->instance_name = out_block.instance_name;
1110         if(stage->type==Stage::GEOMETRY)
1111                 in_block->array = true;
1112         else
1113                 in_block->array = out_block.array;
1114         in_block->linked_block = &out_block;
1115         out_block.linked_block = in_block;
1116
1117         {
1118                 SetFlag set_copy(copy_block, true);
1119                 SetForScope<Block *> set_target(iface_target_block, in_block->members.get());
1120                 SetForScope<NodeList<Statement>::iterator> set_ins_pt(iface_insert_point, in_block->members->body.end());
1121                 if(out_block.struct_declaration)
1122                         out_block.struct_declaration->members.visit(*this);
1123                 else if(out_block.members)
1124                         out_block.members->visit(*this);
1125         }
1126
1127         iface_target_block->body.insert(iface_insert_point, in_block);
1128         stage->interface_blocks.insert(make_pair("in"+in_block->name, in_block));
1129         if(!in_block->instance_name.empty())
1130                 stage->interface_blocks.insert(make_pair("_"+in_block->instance_name, in_block));
1131
1132         SetFlag set_scope(function_scope, false);
1133         SetForScope<Block *> set_block(current_block, &stage->content);
1134         in_block->visit(*this);
1135
1136         return in_block;
1137 }
1138
1139 ExpressionStatement &InterfaceGenerator::insert_assignment(const string &left, Expression *right)
1140 {
1141         Assignment *assign = new Assignment;
1142         VariableReference *ref = new VariableReference;
1143         ref->name = left;
1144         assign->left = ref;
1145         assign->oper = &Operator::get_operator("=", Operator::BINARY);
1146         assign->right = right;
1147
1148         ExpressionStatement *stmt = new ExpressionStatement;
1149         stmt->expression = assign;
1150         current_block->body.insert(assignment_insert_point, stmt);
1151         stmt->visit(*this);
1152
1153         return *stmt;
1154 }
1155
1156 void InterfaceGenerator::visit(VariableReference &var)
1157 {
1158         if(var.declaration || !stage->previous)
1159                 return;
1160         /* Don't pull a variable from previous stage if we just generated an output
1161         interface in this stage */
1162         if(stage->content.variables.count(var.name))
1163                 return;
1164
1165         const map<string, VariableDeclaration *> &prev_vars = stage->previous->content.variables;
1166         map<string, VariableDeclaration *>::const_iterator i = prev_vars.find(var.name);
1167         if(i==prev_vars.end() || i->second->interface!="out")
1168                 i = prev_vars.find(in_prefix+var.name);
1169         if(i!=prev_vars.end() && i->second->interface=="out")
1170         {
1171                 if(stage->type==Stage::GEOMETRY && i->second->array)
1172                         stage->diagnostics.push_back(Diagnostic(Diagnostic::WARN, var.source, var.line,
1173                                 format("Can't access '%s' through automatic interface because it's an array", var.name)));
1174                 else
1175                 {
1176                         generate_interface(*i->second, "in", i->second->name);
1177                         var.name = i->second->name;
1178                 }
1179                 return;
1180         }
1181
1182         const map<string, InterfaceBlock *> &prev_blocks = stage->previous->interface_blocks;
1183         map<string, InterfaceBlock *>::const_iterator j = prev_blocks.find("_"+var.name);
1184         if(j!=prev_blocks.end() && j->second->interface=="out")
1185         {
1186                 generate_interface(*j->second);
1187                 /* Let VariableResolver convert the variable reference into an interface
1188                 block reference. */
1189                 return;
1190         }
1191
1192         for(j=prev_blocks.begin(); j!=prev_blocks.end(); ++j)
1193                 if(j->second->instance_name.empty() && j->second->struct_declaration)
1194                 {
1195                         const map<string, VariableDeclaration *> &iface_vars = j->second->struct_declaration->members.variables;
1196                         i = iface_vars.find(var.name);
1197                         if(i!=iface_vars.end())
1198                         {
1199                                 generate_interface(*j->second);
1200                                 return;
1201                         }
1202                 }
1203 }
1204
1205 void InterfaceGenerator::visit(VariableDeclaration &var)
1206 {
1207         if(copy_block)
1208                 generate_interface(var, "in", var.name);
1209         else if(var.interface=="out")
1210         {
1211                 /* For output variables in function scope, generate a global interface
1212                 and replace the local declaration with an assignment. */
1213                 VariableDeclaration *out_var = 0;
1214                 if(function_scope && (out_var=generate_interface(var, "out", var.name)))
1215                 {
1216                         out_var->source = var.source;
1217                         out_var->line = var.line;
1218                         nodes_to_remove.insert(&var);
1219                         if(var.init_expression)
1220                         {
1221                                 ExpressionStatement &stmt = insert_assignment(var.name, var.init_expression->clone());
1222                                 stmt.source = var.source;
1223                                 stmt.line = var.line;
1224                                 return;
1225                         }
1226                 }
1227         }
1228         else if(var.interface=="in" && current_block==&stage->content)
1229         {
1230                 if(var.name.compare(0, 3, "gl_"))
1231                         declared_inputs.push_back(&var);
1232
1233                 /* Try to link input variables in global scope with output variables from
1234                 previous stage. */
1235                 if(!var.linked_declaration && stage->previous)
1236                 {
1237                         const map<string, VariableDeclaration *> &prev_vars = stage->previous->content.variables;
1238                         map<string, VariableDeclaration *>::const_iterator i = prev_vars.find(var.name);
1239                         if(i!=prev_vars.end() && i->second->interface=="out")
1240                         {
1241                                 var.linked_declaration = i->second;
1242                                 i->second->linked_declaration = &var;
1243                         }
1244                 }
1245         }
1246
1247         TraversingVisitor::visit(var);
1248 }
1249
1250 void InterfaceGenerator::visit(InterfaceBlock &iface)
1251 {
1252         if(iface.interface=="in")
1253         {
1254                 /* Try to link input blocks with output blocks sharing the same block
1255                 name from previous stage. */
1256                 if(!iface.linked_block && stage->previous)
1257                 {
1258                         const map<string, InterfaceBlock *> &prev_blocks = stage->previous->interface_blocks;
1259                         map<string, InterfaceBlock *>::const_iterator i = prev_blocks.find("out"+iface.name);
1260                         if(i!=prev_blocks.end())
1261                         {
1262                                 iface.linked_block = i->second;
1263                                 i->second->linked_block = &iface;
1264                         }
1265                 }
1266         }
1267
1268         TraversingVisitor::visit(iface);
1269 }
1270
1271 void InterfaceGenerator::visit(FunctionDeclaration &func)
1272 {
1273         SetFlag set_scope(function_scope, true);
1274         // Skip parameters because they're not useful here
1275         func.body.visit(*this);
1276 }
1277
1278 void InterfaceGenerator::visit(Passthrough &pass)
1279 {
1280         // Pass through all input variables declared so far.
1281         vector<VariableDeclaration *> pass_vars = declared_inputs;
1282
1283         if(stage->previous)
1284         {
1285                 const map<string, VariableDeclaration *> &prev_vars = stage->previous->content.variables;
1286                 for(map<string, VariableDeclaration *>::const_iterator i=prev_vars.begin(); i!=prev_vars.end(); ++i)
1287                 {
1288                         if(i->second->interface!="out")
1289                                 continue;
1290
1291                         /* Pass through output variables from the previous stage, but only
1292                         those which are not already linked to an input here. */
1293                         if(!i->second->linked_declaration && generate_interface(*i->second, "in", i->second->name))
1294                                 pass_vars.push_back(i->second);
1295                 }
1296         }
1297
1298         if(stage->type==Stage::GEOMETRY)
1299         {
1300                 /* Special case for geometry shader: copy gl_Position from input to
1301                 output. */
1302                 InterfaceBlockReference *ref = new InterfaceBlockReference;
1303                 ref->name = "gl_in";
1304
1305                 BinaryExpression *subscript = new BinaryExpression;
1306                 subscript->left = ref;
1307                 subscript->oper = &Operator::get_operator("[", Operator::BINARY);
1308                 subscript->right = pass.subscript;
1309
1310                 MemberAccess *memacc = new MemberAccess;
1311                 memacc->left = subscript;
1312                 memacc->member = "gl_Position";
1313
1314                 insert_assignment("gl_Position", memacc);
1315         }
1316
1317         for(vector<VariableDeclaration *>::const_iterator i=pass_vars.begin(); i!=pass_vars.end(); ++i)
1318         {
1319                 string out_name = change_prefix((*i)->name, out_prefix);
1320                 generate_interface(**i, "out", out_name);
1321
1322                 VariableReference *ref = new VariableReference;
1323                 ref->name = (*i)->name;
1324                 if(pass.subscript)
1325                 {
1326                         BinaryExpression *subscript = new BinaryExpression;
1327                         subscript->left = ref;
1328                         subscript->oper = &Operator::get_operator("[", Operator::BINARY);
1329                         subscript->right = pass.subscript;
1330                         insert_assignment(out_name, subscript);
1331                 }
1332                 else
1333                         insert_assignment(out_name, ref);
1334         }
1335
1336         nodes_to_remove.insert(&pass);
1337 }
1338
1339 } // namespace SL
1340 } // namespace GL
1341 } // namespace Msp