]> git.tdb.fi Git - libs/gl.git/blob - blender/io_mspgl/mesh.py
Remove support for material atlases from the Blender exporter
[libs/gl.git] / blender / io_mspgl / mesh.py
1 import math
2 import mathutils
3 import itertools
4
5 def make_edge_key(i1, i2):
6         return (min(i1, i2), max(i1, i2))
7
8 class Edge:
9         def __init__(self, edge):
10                 if edge.__class__==Edge:
11                         self.smooth = edge.smooth
12                 else:
13                         self.smooth = False
14                 if edge:
15                         self.vertices = edge.vertices[:]
16                         self.key = edge.key
17                 else:
18                         self.vertices = []
19                         self.key = None
20                 self.faces = []
21
22         def check_smooth(self, limit):
23                 if len(self.faces)!=2:
24                         return
25
26                 d = self.faces[0].normal.dot(self.faces[1].normal)
27                 self.smooth = ((d>limit and self.faces[0].use_smooth and self.faces[1].use_smooth) or d>0.99995)
28
29         def other_face(self, f):
30                 if f.index==self.faces[0].index:
31                         if len(self.faces)>=2:
32                                 return self.faces[1]
33                         else:
34                                 return None
35                 else:
36                         return self.faces[0]
37
38         def other_vertex(self, v):
39                 if v.index==self.vertices[0].index:
40                         return self.vertices[1]
41                 else:
42                         return self.vertices[0]
43
44
45 class Vertex:
46         def __init__(self, vertex):
47                 if vertex.__class__==Vertex:
48                         self.uvs = vertex.uvs[:]
49                         self.tan = vertex.tan
50                 else:
51                         self.uvs = []
52                         self.tan = None
53                 self.index = vertex.index
54                 self.co = mathutils.Vector(vertex.co)
55                 self.normal = mathutils.Vector(vertex.normal)
56                 self.color = None
57                 self.flag = False
58                 self.edges = []
59                 self.faces = []
60                 self.groups = vertex.groups[:]
61
62         def __cmp__(self, other):
63                 if other is None:
64                         return 1
65                 return cmp(self.index, other.index)
66
67
68 class VertexGroup:
69         def __init__(self, group):
70                 if group:
71                         self.group = group.group
72                         self.weight = group.weight
73                 else:
74                         self.group = 0
75                         self.weight = 0.0
76
77
78 class Face:
79         def __init__(self, face):
80                 self.index = face.index
81                 self.edges = []
82                 self.edge_keys = face.edge_keys
83                 self.vertices = face.vertices[:]
84                 self.loop_indices = face.loop_indices
85                 self.normal = face.normal
86                 self.use_smooth = face.use_smooth
87                 self.material_index = face.material_index
88                 self.flag = False
89
90         def __cmp__(self, other):
91                 if other is None:
92                         return 1
93                 return cmp(self.index, other.index)
94
95         def pivot_vertex(self, v):
96                 n = self.vertices.index(v)
97                 return [(n+i)%len(self.vertices) for i in range(len(self.vertices))]
98
99         def get_loop_index(self, v):
100                 return self.loop_indices[self.vertices.index(v)]
101
102         def get_edge(self, v1, v2):
103                 key = make_edge_key(v1.index, v2.index)
104                 for e in self.edges:
105                         if e.key==key:
106                                 return e
107                 raise KeyError("No edge %s"%(key,))
108
109         def other_edge(self, e, v):
110                 for d in self.edges:
111                         if d!=e and v in d.vertices:
112                                 return d
113
114         def get_neighbors(self):
115                 neighbors = [e.other_face(self) for e in self.edges]
116                 return list(filter(bool, neighbors))
117
118
119 class Line:
120         def __init__(self, e):
121                 self.edge = e
122                 self.vertices = e.vertices[:]
123                 self.flag = False
124
125
126 class UvLayer:
127         def __init__(self, arg):
128                 if type(arg)==str:
129                         self.name = arg
130                         self.uvs = []
131                 else:
132                         self.name = arg.name
133                         self.uvs = [mathutils.Vector(d.uv) for d in arg.data]
134
135                 self.unit = None
136                 self.hidden = False
137
138                 dot = self.name.find('.')
139                 if dot>=0:
140                         ext = self.name[dot:]
141                         if ext.startswith(".unit") and ext[5:].isdigit():
142                                 self.unit = int(ext[5:])
143                         elif ext==".hidden":
144                                 self.hidden = True
145
146
147 class ColorLayer:
148         def __init__(self, l):
149                 self.name = l.name
150                 self.colors = [c.color[:] for c in l.data]
151
152
153 class Mesh:
154         def __init__(self, mesh):
155                 self.name = mesh.name
156
157                 self.smoothing = mesh.smoothing
158                 self.use_uv = mesh.use_uv
159                 self.tangent_uvtex = mesh.tangent_uvtex
160                 self.use_strips = mesh.use_strips
161                 self.vertex_groups = mesh.vertex_groups
162
163                 # Clone basic data
164                 self.vertices = [Vertex(v) for v in mesh.vertices]
165                 if self.vertex_groups:
166                         for v in self.vertices:
167                                 v.groups = [VertexGroup(g) for g in v.groups]
168
169                 self.faces = [Face(f) for f in mesh.polygons]
170                 self.edges = [Edge(e) for e in mesh.edges]
171                 self.loops = mesh.loops[:]
172                 self.materials = mesh.materials[:]
173
174                 self.use_auto_smooth = mesh.use_auto_smooth
175                 self.auto_smooth_angle = mesh.auto_smooth_angle
176                 self.max_groups_per_vertex = mesh.max_groups_per_vertex
177
178                 # Clone only the desired UV layers
179                 if mesh.use_uv=='NONE' or not mesh.uv_layers:
180                         self.uv_layers = []
181                 else:
182                         self.uv_layers = [UvLayer(u) for u in mesh.uv_layers if u.data]
183
184                         # Assign texture unit numbers to UV layers that lack one
185                         missing_unit = [u for u in self.uv_layers if u.unit is None]
186                         if missing_unit:
187                                 missing_unit = sorted(missing_unit, key=(lambda u: u.name))
188                                 used_units = [u.unit for u in self.uv_layers if u.unit is not None]
189                                 for u, n in zip(missing_unit, (i for i in itertools.count() if i not in used_units)):
190                                         u.unit = n
191
192                         self.uv_layers = sorted(self.uv_layers, key=(lambda u: u.unit))
193
194                         if mesh.use_uv=='UNIT0' and self.uv_layers:
195                                 self.uv_layers = [self.uv_layers[0]]
196                                 if self.uv_layers[0].unit!=0:
197                                         self.uv_layers = []
198
199                 self.colors = None
200                 if mesh.vertex_colors:
201                         self.colors = ColorLayer(mesh.vertex_colors[0])
202
203                 # Rewrite links between elements to point to cloned data, or create links
204                 # where they don't exist
205                 edge_map = {e.key: e for e in self.edges}
206                 for f in self.faces:
207                         if len(f.vertices)>4:
208                                 raise ValueError("Unsupported face on mesh {}: N-gon".format(self.name))
209
210                         f.vertices = [self.vertices[i] for i in f.vertices]
211                         for v in f.vertices:
212                                 v.faces.append(f)
213
214                         for k in f.edge_keys:
215                                 e = edge_map[k]
216                                 e.faces.append(f)
217                                 f.edges.append(e)
218
219                 for e in self.edges:
220                         e.vertices = [self.vertices[i] for i in e.vertices]
221                         for v in e.vertices:
222                                 v.edges.append(e)
223
224                 # Store loose edges as lines
225                 if mesh.use_lines:
226                         self.lines = [Line(e) for e in self.edges if not e.faces]
227                 else:
228                         self.lines = []
229
230                 # Check if tangent vectors are needed
231                 if mesh.tangent_vecs=='NO':
232                         self.tangent_vecs = False
233                 elif mesh.tangent_vecs=='YES':
234                         self.tangent_vecs = True
235                 elif mesh.tangent_vecs=='AUTO':
236                         from .material import Material
237                         self.tangent_vecs = False
238                         for m in self.materials:
239                                 mat = Material(m)
240                                 if mat.type=="pbr":
241                                         normal_prop = next((p for p in mat.properties if p.tex_keyword=="normal_map"), None)
242                                         if normal_prop and normal_prop.texture:
243                                                 self.tangent_vecs = True
244
245                 self.vertex_sequence = []
246
247         def transform(self, matrix):
248                 for v in self.vertices:
249                         v.co = matrix@v.co
250
251         def splice(self, other):
252                 if len(self.uv_layers)!=len(other.uv_layers):
253                         raise ValueError("Meshes {} and {} have incompatible UV layers".format(self.name, other.name))
254                 for i, u in enumerate(self.uv_layers):
255                         if u.name!=other.uv_layers[i].name:
256                                 raise ValueError("Meshes {} and {} have incompatible UV layers".format(self.name, other.name))
257
258                 # Merge materials and form a lookup from source material indices to the
259                 # merged material list
260                 material_lookup = []
261                 for m in other.materials:
262                         if m in self.materials:
263                                 material_lookup.append(self.materials.index(m))
264                         else:
265                                 material_lookup.append(len(self.materials))
266                                 self.materials.append(m)
267
268                 # Append data and adjust indices where necessary.  Since the data is
269                 # spliced from the source mesh, rebuilding references is not necessary.
270                 for i, u in enumerate(self.uv_layers):
271                         u.uvs += other.uv_layers[i].uvs
272
273                 if self.colors:
274                         if other.colors:
275                                 self.colors.colors += other.colors.colors
276                         else:
277                                 self.colors.colors += [(1.0, 1.0, 1.0, 1.0)]*len(other.loops)
278                 elif other.colors:
279                         self.colors = ColorLayer(other.colors.name)
280                         self.colors.colors = [(1.0, 1.0, 1.0, 1.0)]*len(self.loops)+other.colors.colors
281
282                 offset = len(self.vertices)
283                 self.vertices += other.vertices
284                 for v in self.vertices[offset:]:
285                         v.index += offset
286
287                 loop_offset = len(self.loops)
288                 self.loops += other.loops
289
290                 offset = len(self.faces)
291                 self.faces += other.faces
292                 for f in self.faces[offset:]:
293                         f.index += offset
294                         f.loop_indices = range(f.loop_indices.start+offset, f.loop_indices.stop+offset)
295                         if other.materials:
296                                 f.material_index = material_lookup[f.material_index]
297
298                 offset = len(self.edges)
299                 self.edges += other.edges
300                 for e in self.edges[offset:]:
301                         e.index += offset
302                         e.key = make_edge_key(e.vertices[0].index, e.vertices[1].index)
303
304                 self.lines += other.lines
305
306         def prepare_triangles(self, task):
307                 face_count = len(self.faces)
308                 for i in range(face_count):
309                         f = self.faces[i]
310                         nverts = len(f.vertices)
311                         if nverts==3:
312                                 continue
313
314                         # Calculate normals at each vertex of the face
315                         edge_vecs = []
316                         for j in range(nverts):
317                                 edge_vecs.append(f.vertices[(j+1)%nverts].co-f.vertices[j].co)
318
319                         normals = []
320                         for j in range(nverts):
321                                 normals.append(edge_vecs[j-1].cross(edge_vecs[j]).normalized())
322
323                         # Check which diagonal results in a flatter triangulation
324                         flatness1 = normals[0].dot(normals[2])
325                         flatness2 = normals[1].dot(normals[3])
326                         cut_index = 1 if flatness1>flatness2 else 0
327
328                         nf = Face(f)
329                         nf.index = len(self.faces)
330                         self.faces.append(nf)
331
332                         ne = Edge(None)
333                         ne.index = len(self.edges)
334                         self.edges.append(ne)
335
336                         nf.vertices = [f.vertices[cut_index], f.vertices[2], f.vertices[3]]
337                         nf.loop_indices = [f.loop_indices[cut_index], f.loop_indices[2], f.loop_indices[3]]
338                         for v in nf.vertices:
339                                 v.faces.append(nf)
340
341                         ne.vertices = [f.vertices[cut_index], f.vertices[2+cut_index]]
342                         for v in ne.vertices:
343                                 v.edges.append(ne)
344                         ne.key = make_edge_key(ne.vertices[0].index, ne.vertices[1].index)
345                         ne.smooth = True
346
347                         f.vertices[3-cut_index].faces.remove(f)
348                         del f.vertices[3-cut_index]
349                         f.loop_indices = [f.loop_indices[0], f.loop_indices[1], f.loop_indices[2+cut_index]]
350
351                         ne.faces = [f, nf]
352                         if cut_index==0:
353                                 nf.edges = [ne, f.edges[2], f.edges[3]]
354                                 f.edges = [f.edges[0], f.edges[1], ne]
355                         else:
356                                 nf.edges = [f.edges[1], f.edges[2], ne]
357                                 f.edges = [f.edges[0], ne, f.edges[3]]
358                         for e in nf.edges:
359                                 if e!=ne:
360                                         e.faces.remove(f)
361                                         e.faces.append(nf)
362
363                         f.normal = normals[1-cut_index]
364                         nf.normal = normals[3-cut_index]
365
366                         task.set_progress(i/face_count)
367
368         def prepare_smoothing(self, task):
369                 smooth_limit = -1
370                 if self.smoothing=='NONE':
371                         for f in self.faces:
372                                 f.use_smooth = False
373
374                         smooth_limit = 1
375                 elif self.use_auto_smooth:
376                         smooth_limit = math.cos(self.auto_smooth_angle)
377
378                 for e in self.edges:
379                         e.check_smooth(smooth_limit)
380
381                 subtask = task.task("Sharp edges", 0.7)
382                 self.split_vertices(self.find_smooth_group, subtask)
383
384                 if self.smoothing!='BLENDER':
385                         subtask = task.task("Updating normals", 1.0)
386                         self.compute_normals(subtask)
387
388         def prepare_vertex_groups(self, obj):
389                 if not self.vertex_groups:
390                         return
391
392                 for v in self.vertices:
393                         if v.groups:
394                                 weight_sum = sum(g.weight for g in v.groups)
395                                 v.groups = sorted(v.groups, key=(lambda g: g.weight), reverse=True)[:self.max_groups_per_vertex]
396                                 weight_scale = weight_sum/sum(g.weight for g in v.groups)
397                                 for g in v.groups:
398                                         g.weight *= weight_scale
399                         while len(v.groups)<self.max_groups_per_vertex:
400                                 v.groups.append(VertexGroup(None))
401
402                 if obj.parent and obj.parent.type=="ARMATURE":
403                         armature = obj.parent.data
404                         bone_indices = {b.name: i for i, b in enumerate(armature.bones)}
405                         group_index_map = {i: i for i in range(len(obj.vertex_groups))}
406                         for g in first_obj.vertex_groups:
407                                 if g.name in bone_indices:
408                                         group_index_map[g.index] = bone_indices[g.name]
409
410                         for v in self.vertices:
411                                 for g in v.groups:
412                                         g.group = group_index_map[g.group]
413
414         def prepare_uv(self, task):
415                 # Form a list of UV layers referenced by materials with the array atlas
416                 # property set
417                 array_uv_layers = [] #[t.uv_layer for m in self.materials if m.array_atlas for t in m.texture_slots if t and t.texture_coords=='UV']
418                 array_uv_layers = [u for u in self.uv_layers if u.name in array_uv_layers]
419
420                 if array_uv_layers:
421                         for f in self.faces:
422                                 layer = 0
423                                 if f.material_index<len(self.materials):
424                                         mat = self.materials[f.material_index]
425                                         if mat and mat.array_atlas:
426                                                 layer = mat.array_layer
427
428                                 for l in array_uv_layers:
429                                         for i in f.loop_indices:
430                                                 l.uvs[i] = mathutils.Vector((*l.uvs[i], layer))
431
432                 # Split by the UV layer used for tangent vectors first so connectivity
433                 # remains intact for tangent vector computation
434                 tangent_layer_index = -1
435                 if self.tangent_vecs:
436                         if self.tangent_uvtex:
437                                 uv_names = [u.name for u in self.uv_layers]
438                                 if self.tangent_uvtex in uv_names:
439                                         tangent_layer_index = uv_names.index(self.tangent_uvtex)
440                         elif self.uv_layers[0].unit==0:
441                                 tangent_layer_index = 0
442
443                         if tangent_layer_index<0:
444                                 raise Exception("Invalid configuration on mesh {}: No tangent UV layer".format(self.name))
445
446                 prog_count = len(self.uv_layers)
447                 if tangent_layer_index>=0:
448                         prog_count += 1
449                 task.set_slices(prog_count)
450
451                 if tangent_layer_index>=0:
452                         subtask = task.next_slice("Computing tangents")
453                         self.split_vertices(self.find_uv_group, subtask, tangent_layer_index)
454                         subtask = task.next_slice(self.tangent_uvtex)
455                         self.compute_tangents(tangent_layer_index, subtask)
456
457                 # Split by the remaining UV layers
458                 for i, u in enumerate(self.uv_layers):
459                         if i==tangent_layer_index:
460                                 continue
461
462                         subtask = task.next_slice(u.name)
463                         self.split_vertices(self.find_uv_group, subtask, i)
464
465                 # Copy UVs from layers to vertices
466                 for v in self.vertices:
467                         if v.faces:
468                                 # All faces still connected to the vertex have the same UV value
469                                 f = v.faces[0]
470                                 i = f.get_loop_index(v)
471                                 v.uvs = [u.uvs[i] for u in self.uv_layers]
472                         else:
473                                 v.uvs = [(0.0, 0.0)]*len(self.uv_layers)
474
475         def prepare_colors(self, task):
476                 if not self.colors:
477                         return
478
479                 self.split_vertices(self.find_color_group, task)
480
481                 for v in self.vertices:
482                         if v.faces:
483                                 f = v.faces[0]
484                                 v.color = self.colors.colors[f.get_loop_index(v)]
485                         else:
486                                 v.color = (1.0, 1.0, 1.0, 1.0)
487
488         def split_vertices(self, find_group_func, task, *args):
489                 vertex_count = len(self.vertices)
490                 for i in range(vertex_count):
491                         v = self.vertices[i]
492                         for f in v.faces:
493                                 f.flag = False
494
495                         # Find all groups of faces on this vertex
496                         groups = []
497                         for f in v.faces:
498                                 if not f.flag:
499                                         groups.append(find_group_func(v, f, *args))
500
501                         # Give groups after the first separate copies of the vertex
502                         for g in groups[1:]:
503                                 nv = Vertex(v)
504                                 nv.index = len(self.vertices)
505                                 self.vertices.append(nv)
506
507                                 for e in v.edges:
508                                         e_faces_in_g = [f for f in e.faces if f in g]
509                                         if not e_faces_in_g:
510                                                 continue
511
512                                         if len(e_faces_in_g)<len(e.faces):
513                                                 # Create a copy of an edge at the boundary of the group
514                                                 ne = Edge(e)
515                                                 ne.index = len(self.edges)
516                                                 self.edges.append(ne)
517
518                                                 ne.other_vertex(v).edges.append(ne)
519
520                                                 for f in e_faces_in_g:
521                                                         e.faces.remove(f)
522                                                         f.edges[f.edges.index(e)] = ne
523                                                         ne.faces.append(f)
524
525                                                 e = ne
526
527                                         e.vertices[e.vertices.index(v)] = nv
528                                         nv.edges.append(e)
529
530                                         e.key = make_edge_key(e.vertices[0].index, e.vertices[1].index)
531
532                                 # Filter out any edges that were removed from the original vertex
533                                 v.edges = [e for e in v.edges if v in e.vertices]
534
535                                 for f in g:
536                                         v.faces.remove(f)
537                                         f.vertices[f.vertices.index(v)] = nv
538                                         nv.faces.append(f)
539
540                         task.set_progress(i/vertex_count)
541
542         def find_smooth_group(self, vertex, face):
543                 face.flag = True
544
545                 edges = [e for e in face.edges if vertex in e.vertices]
546
547                 group = [face]
548                 for e in edges:
549                         f = face
550                         while e.smooth:
551                                 f = e.other_face(f)
552                                 if not f or f.flag:
553                                         break
554
555                                 f.flag = True
556                                 group.append(f)
557                                 e = f.other_edge(e, vertex)
558
559                 return group
560
561         def find_uv_group(self, vertex, face, index):
562                 layer = self.uv_layers[index]
563                 uv = layer.uvs[face.get_loop_index(vertex)]
564                 face.flag = True
565
566                 group = [face]
567                 for f in vertex.faces:
568                         if not f.flag and layer.uvs[f.get_loop_index(vertex)]==uv:
569                                 f.flag = True
570                                 group.append(f)
571
572                 return group
573
574         def find_color_group(self, vertex, face):
575                 color = self.colors.colors[face.get_loop_index(vertex)]
576                 face.flag = True
577
578                 group = [face]
579                 for f in vertex.faces:
580                         if not f.flag and self.colors.colors[f.get_loop_index(vertex)]==color:
581                                 f.flag = True
582                                 group.append(f)
583
584                 return group
585
586         def compute_normals(self, task):
587                 for i, v in enumerate(self.vertices):
588                         v.normal = mathutils.Vector()
589                         for f in v.faces:
590                                 vi = f.pivot_vertex(v)
591                                 edge1 = f.vertices[vi[1]].co-v.co
592                                 edge2 = f.vertices[vi[-1]].co-v.co
593                                 if edge1.length and edge2.length:
594                                         # Use the angle between edges as a weighting factor.  This gives
595                                         # more consistent normals on bends with an inequal number of
596                                         # faces on each side.
597                                         v.normal += f.normal*edge1.angle(edge2)
598
599                         if v.normal.length:
600                                 v.normal.normalize()
601                         else:
602                                 v.normal = mathutils.Vector((0, 0, 1))
603
604                         task.set_progress(i/len(self.vertices))
605
606         def compute_tangents(self, index, task):
607                 layer_uvs = self.uv_layers[index].uvs
608
609                 for i, v in enumerate(self.vertices):
610                         v.tan = mathutils.Vector()
611                         for f in v.faces:
612                                 vi = f.pivot_vertex(v)
613                                 uv0 = layer_uvs[f.loop_indices[vi[0]]]
614                                 uv1 = layer_uvs[f.loop_indices[vi[1]]]
615                                 uv2 = layer_uvs[f.loop_indices[vi[-1]]]
616                                 du1 = uv1[0]-uv0[0]
617                                 du2 = uv2[0]-uv0[0]
618                                 dv1 = uv1[1]-uv0[1]
619                                 dv2 = uv2[1]-uv0[1]
620                                 edge1 = f.vertices[vi[1]].co-f.vertices[vi[0]].co
621                                 edge2 = f.vertices[vi[-1]].co-f.vertices[vi[0]].co
622                                 div = (du1*dv2-du2*dv1)
623                                 if div:
624                                         mul = edge1.angle(edge2)/div
625                                         v.tan += (edge1*dv2-edge2*dv1)*mul
626
627                         if v.tan.length:
628                                 v.tan.normalize()
629
630                         task.set_progress(i/len(self.vertices))
631
632         def prepare_sequence(self, task):
633                 subtask = task.task("Reordering faces", 0.5)
634                 self.reorder_faces(subtask)
635
636                 subtask = task.task("Building sequence", 1.0)
637                 sequence = None
638                 for i, f in enumerate(self.faces):
639                         if sequence:
640                                 if len(sequence)==3:
641                                         # Rotate the first three vertices so that the new face can be added
642                                         if sequence[0] in f.vertices and sequence[1] not in f.vertices:
643                                                 sequence.append(sequence[0])
644                                                 del sequence[0]
645                                         elif sequence[2] not in f.vertices and sequence[1] in f.vertices:
646                                                 sequence.insert(0, sequence[-1])
647                                                 del sequence[-1]
648
649                                 if sequence[-1] not in f.vertices:
650                                         sequence = None
651                                 else:
652                                         to_add = [v for v in f.vertices if v!=sequence[-1] and v!=sequence[-2]]
653                                         if len(to_add)==2:
654                                                 if (f.vertices[1]==sequence[-1]) != (len(sequence)%2==1):
655                                                         to_add.reverse()
656                                                 sequence.append(sequence[-1])
657                                         sequence += to_add
658
659                         if not sequence:
660                                 sequence = f.vertices[:]
661                                 self.vertex_sequence.append(sequence)
662
663                         subtask.set_progress(i/len(self.faces))
664
665                 self.reorder_vertices()
666
667         def reorder_faces(self, task):
668                 # Tom Forsyth's vertex cache optimization algorithm
669                 # http://eelpi.gotdns.org/papers/fast_vert_cache_opt.html
670
671                 for f in self.faces:
672                         f.flag = False
673
674                 last_triangle_score = 0.75
675                 cache_decay_power = 1.5
676                 valence_boost_scale = 2.0
677                 valence_boost_power = -0.5
678
679                 max_cache_size = 32
680                 cached_vertices = []
681
682                 # Keep track of the score and number of unused faces for each vertex
683                 vertex_info = [[0, len(v.faces)] for v in self.vertices]
684                 for vi in vertex_info:
685                         if vi[1]:
686                                 vi[0] = valence_boost_scale*(vi[1]**valence_boost_power)
687
688                 face = None
689                 reordered_faces = []
690
691                 n_processed = 0
692                 while 1:
693                         if not face:
694                                 # Previous iteration gave no candidate for best face (or this is
695                                 # the first iteration).  Scan all faces for the highest score.
696                                 best_score = 0
697                                 for f in self.faces:
698                                         if f.flag:
699                                                 continue
700
701                                         score = sum(vertex_info[v.index][0] for v in f.vertices)
702                                         if score>best_score:
703                                                 best_score = score
704                                                 face = f
705
706                         if not face:
707                                 break
708
709                         reordered_faces.append(face)
710                         face.flag = True
711
712                         for v in face.vertices:
713                                 vertex_info[v.index][1] -= 1
714
715                                 # Shuffle the vertex into the front of the cache
716                                 if v in cached_vertices:
717                                         cached_vertices.remove(v)
718                                 cached_vertices.insert(0, v)
719
720                         # Update scores for all vertices in the cache
721                         for i, v in enumerate(cached_vertices):
722                                 score = 0
723                                 if i<3:
724                                         score += last_triangle_score
725                                 elif i<max_cache_size:
726                                         score += (1-(i-3)/(max_cache_size-3))**cache_decay_power
727                                 if vertex_info[v.index][1]:
728                                         score += valence_boost_scale*(vertex_info[v.index][1]**valence_boost_power)
729                                 vertex_info[v.index][0] = score
730
731                         face = None
732                         best_score = 0
733                         for v in cached_vertices:
734                                 for f in v.faces:
735                                         if not f.flag:
736                                                 score = sum(vertex_info[fv.index][0] for fv in f.vertices)
737                                                 if score>best_score:
738                                                         best_score = score
739                                                         face = f
740
741                         del cached_vertices[max_cache_size:]
742
743                         n_processed += 1
744                         task.set_progress(n_processed/len(self.faces))
745
746                 self.faces = reordered_faces
747                 for i, f in enumerate(self.faces):
748                         f.index = i
749
750         def reorder_vertices(self):
751                 for v in self.vertices:
752                         v.index = -1
753
754                 reordered_vertices = []
755                 for s in self.vertex_sequence:
756                         for v in s:
757                                 if v.index<0:
758                                         v.index = len(reordered_vertices)
759                                         reordered_vertices.append(v)
760
761                 for v in self.vertices:
762                         if v.index<0:
763                                 v.index = len(reordered_vertices)
764                                 reordered_vertices.append(v)
765
766                 self.vertices = reordered_vertices
767
768                 for e in self.edges:
769                         e.key = make_edge_key(e.vertices[0].index, e.vertices[1].index)
770
771
772 def create_mesh_from_object(ctx, obj):
773         if obj.type!="MESH":
774                 raise Exception("Object {} is not a mesh".format(obj.name))
775
776         task = ctx.task("Collecting mesh data", 0.2)
777
778         objs = [(obj, mathutils.Matrix())]
779         i = 0
780         while i<len(objs):
781                 o, m = objs[i]
782                 i += 1
783                 for c in o.children:
784                         if c.type=="MESH" and c.compound:
785                                 objs.append((c, m*c.matrix_local))
786
787         dg = ctx.context.evaluated_depsgraph_get()
788
789         mesh = None
790         for o, m in objs:
791                 eval_obj = o.evaluated_get(dg)
792                 bmesh = eval_obj.to_mesh()
793
794                 # Object.to_mesh does not copy custom properties
795                 bmesh.smoothing = o.data.smoothing
796                 bmesh.use_lines = o.data.use_lines
797                 bmesh.vertex_groups = o.data.vertex_groups
798                 bmesh.max_groups_per_vertex = o.data.max_groups_per_vertex
799                 bmesh.use_uv = o.data.use_uv
800                 bmesh.tangent_vecs = o.data.tangent_vecs
801                 bmesh.tangent_uvtex = o.data.tangent_uvtex
802
803                 me = Mesh(bmesh)
804                 me.transform(m)
805
806                 for i, s in enumerate(eval_obj.material_slots):
807                         if s.link=='OBJECT':
808                                 me.materials[i] = s.material
809
810                 if mesh:
811                         mesh.splice(me)
812                 else:
813                         mesh = me
814
815         mesh.name = obj.data.name
816
817         task = ctx.task("Triangulating", 0.3)
818         mesh.prepare_triangles(task)
819         task = ctx.task("Smoothing", 0.5)
820         mesh.prepare_smoothing(task)
821         task = ctx.task("Vertex groups", 0.6)
822         mesh.prepare_vertex_groups(obj)
823         task = ctx.task("Preparing UVs", 0.75)
824         mesh.prepare_uv(task)
825         task = ctx.task("Preparing vertex colors", 0.85)
826         mesh.prepare_colors(task)
827         task = ctx.task("Render sequence", 1.0)
828         mesh.prepare_sequence(task)
829
830         return mesh