]> git.tdb.fi Git - libs/gl.git/blobdiff - blender/io_mspgl/mesh.py
Include only tangent in mesh data and calculate binormal on the fly
[libs/gl.git] / blender / io_mspgl / mesh.py
index a41cbc1311c8a9c077ff78980ecfb1e48a37b4e3..9741b8dd916f28495d3e25cde8fd64e767a7d118 100644 (file)
@@ -1,23 +1,25 @@
+import bpy
 import math
 import mathutils
+import itertools
 
 def make_edge_key(i1, i2):
        return (min(i1, i2), max(i1, i2))
 
 class Edge:
-       def __init__(self, me):
-               if me.__class__==Edge:
-                       self._medge = me._medge
-                       self.vertices = me.vertices[:]
-                       self.smooth = me.smooth
+       def __init__(self, edge):
+               if edge.__class__==Edge:
+                       self.smooth = edge.smooth
                else:
-                       self._medge = me
                        self.smooth = False
+               if edge:
+                       self.vertices = edge.vertices[:]
+                       self.key = edge.key
+               else:
+                       self.vertices = []
+                       self.key = None
                self.faces = []
 
-       def __getattr__(self, attr):
-               return getattr(self._medge, attr)
-
        def check_smooth(self, limit):
                if len(self.faces)!=2:
                        return
@@ -34,27 +36,29 @@ class Edge:
                else:
                        return self.faces[0]
 
+       def other_vertex(self, v):
+               if v.index==self.vertices[0].index:
+                       return self.vertices[1]
+               else:
+                       return self.vertices[0]
+
 
 class Vertex:
-       def __init__(self, mv):
-               if mv.__class__==Vertex:
-                       self._mvert = mv._mvert
-                       self.normal = mv.normal
-                       self.uvs = mv.uvs[:]
-                       self.tan = mv.tan
-                       self.bino = mv.bino
-                       self.group_weight_scale = mv.group_weight_scale
+       def __init__(self, vertex):
+               if vertex.__class__==Vertex:
+                       self.uvs = vertex.uvs[:]
+                       self.tan = vertex.tan
                else:
-                       self._mvert = mv
                        self.uvs = []
                        self.tan = None
-                       self.bino = None
-                       self.group_weight_scale = 1
+               self.index = vertex.index
+               self.co = mathutils.Vector(vertex.co)
+               self.normal = mathutils.Vector(vertex.normal)
+               self.color = None
                self.flag = False
+               self.edges = []
                self.faces = []
-
-       def __getattr__(self, attr):
-               return getattr(self._mvert, attr)
+               self.groups = vertex.groups[:]
 
        def __cmp__(self, other):
                if other is None:
@@ -62,36 +66,52 @@ class Vertex:
                return cmp(self.index, other.index)
 
 
+class VertexGroup:
+       def __init__(self, group):
+               if group:
+                       self.group = group.group
+                       self.weight = group.weight
+               else:
+                       self.group = 0
+                       self.weight = 0.0
+
+
 class Face:
-       def __init__(self, mf):
-               self._mface = mf
+       def __init__(self, face):
+               self.index = face.index
                self.edges = []
-               self.vertices = mf.vertices[:]
-               self.uvs = []
+               self.edge_keys = face.edge_keys
+               self.vertices = face.vertices[:]
+               self.loop_indices = face.loop_indices
+               self.normal = face.normal
+               self.use_smooth = face.use_smooth
+               self.material_index = face.material_index
                self.flag = False
 
-       def __getattr__(self, attr):
-               return getattr(self._mface, attr)
-
        def __cmp__(self, other):
                if other is None:
                        return 1
                return cmp(self.index, other.index)
 
-       def pivot_vertices(self, *vt):
-               flags = [(v in vt) for v in self.vertices]
-               l = len(self.vertices)
-               for i in range(l):
-                       if flags[i] and not flags[(i+l-1)%l]:
-                               return self.vertices[i:]+self.vertices[:i]
+       def pivot_vertex(self, v):
+               n = self.vertices.index(v)
+               return [(n+i)%len(self.vertices) for i in range(len(self.vertices))]
+
+       def get_loop_index(self, v):
+               return self.loop_indices[self.vertices.index(v)]
 
-       def get_edge(self, v1, v2):     
+       def get_edge(self, v1, v2):
                key = make_edge_key(v1.index, v2.index)
                for e in self.edges:
                        if e.key==key:
                                return e
                raise KeyError("No edge %s"%(key,))
 
+       def other_edge(self, e, v):
+               for d in self.edges:
+                       if d!=e and v in d.vertices:
+                               return d
+
        def get_neighbors(self):
                neighbors = [e.other_face(self) for e in self.edges]
                return list(filter(bool, neighbors))
@@ -105,12 +125,17 @@ class Line:
 
 
 class UvLayer:
-       def __init__(self, l, t):
-               self._layer = l
-               self.uvtex = t
-               self.name = self.uvtex.name
+       def __init__(self, arg):
+               if type(arg)==str:
+                       self.name = arg
+                       self.uvs = []
+               else:
+                       self.name = arg.name
+                       self.uvs = [mathutils.Vector(d.uv) for d in arg.data]
+
                self.unit = None
                self.hidden = False
+
                dot = self.name.find('.')
                if dot>=0:
                        ext = self.name[dot:]
@@ -119,297 +144,704 @@ class UvLayer:
                        elif ext==".hidden":
                                self.hidden = True
 
-       def __getattr__(self, attr):
-               return getattr(self._layer, attr)
 
-class FakeUvLayer:
-       def __init__(self, n):
-               self.uvtex = None
-               self.name = n
-               self.unit = None
-               self.hidden = False
+class ColorLayer:
+       def __init__(self, l):
+               self.name = l.name
+               self.colors = [c.color[:] for c in l.data]
 
-class Mesh:
-       def __init__(self, m):
-               self._mesh = m
-
-               self.vertices = [Vertex(v) for v in self.vertices]
-               self.faces = [Face(f) for f in self.polygons]
-
-               self.materials = self.materials[:]
-
-               self.uv_layers = [UvLayer(self.uv_layers[i], self.uv_textures[i]) for i in range(len(self.uv_layers))]
-               self.assign_texture_units()
 
+class Mesh:
+       def __init__(self, mesh):
+               self.name = mesh.name
+
+               self.winding_test = mesh.winding_test
+               self.smoothing = mesh.smoothing
+               self.use_uv = mesh.use_uv
+               self.tangent_vecs = mesh.tangent_vecs
+               self.tangent_uvtex = mesh.tangent_uvtex
+               self.vertex_groups = mesh.vertex_groups
+
+               # Clone basic data
+               self.vertices = [Vertex(v) for v in mesh.vertices]
+               if self.vertex_groups:
+                       for v in self.vertices:
+                               v.groups = [VertexGroup(g) for g in v.groups]
+
+               self.faces = [Face(f) for f in mesh.polygons]
+               self.edges = [Edge(e) for e in mesh.edges]
+               self.loops = mesh.loops[:]
+               self.materials = mesh.materials[:]
+
+               self.use_auto_smooth = mesh.use_auto_smooth
+               self.auto_smooth_angle = mesh.auto_smooth_angle
+               self.max_groups_per_vertex = mesh.max_groups_per_vertex
+
+               # Clone only the desired UV layers
+               if mesh.use_uv=='NONE' or not mesh.uv_layers:
+                       self.uv_layers = []
+               else:
+                       self.uv_layers = [UvLayer(u) for u in mesh.uv_layers]
+
+                       # Assign texture unit numbers to UV layers that lack one
+                       missing_unit = [u for u in self.uv_layers if u.unit is None]
+                       if missing_unit:
+                               missing_unit = sorted(missing_unit, key=(lambda u: u.name))
+                               used_units = [u.unit for u in self.uv_layers if u.unit is not None]
+                               for u, n in zip(missing_unit, (i for i in itertools.count() if i not in used_units)):
+                                       u.unit = n
+
+                       self.uv_layers = sorted(self.uv_layers, key=(lambda u: u.unit))
+
+                       if mesh.use_uv=='UNIT0':
+                               self.uv_layers = [self.uv_layers[0]]
+                               if self.uv_layers[0].unit!=0:
+                                       self.uv_layers = []
+
+               self.colors = None
+               if mesh.vertex_colors:
+                       self.colors = ColorLayer(mesh.vertex_colors[0])
+
+               # Rewrite links between elements to point to cloned data, or create links
+               # where they don't exist
+               edge_map = {e.key: e for e in self.edges}
                for f in self.faces:
+                       if len(f.vertices)>4:
+                               raise ValueError("Ngons are not supported")
+
                        f.vertices = [self.vertices[i] for i in f.vertices]
                        for v in f.vertices:
                                v.faces.append(f)
-                       for u in self.uv_layers:
-                               f.uvs.append([u.data[f.loop_indices[i]].uv for i in range(len(f.vertices))])
 
-               self.edges = dict([(e.key, Edge(e)) for e in self.edges])
-               for f in self.faces:
                        for k in f.edge_keys:
-                               e = self.edges[k]
-                               e.faces.append(self.faces[f.index])
+                               e = edge_map[k]
+                               e.faces.append(f)
                                f.edges.append(e)
 
-               self.lines = [Line(e) for e in self.edges.values() if not e.faces]
+               for e in self.edges:
+                       e.vertices = [self.vertices[i] for i in e.vertices]
+                       for v in e.vertices:
+                               v.edges.append(e)
 
-               if self.use_auto_smooth:
-                       smooth_limit = math.cos(self.auto_smooth_angle)
+               # Store loose edges as lines
+               if mesh.use_lines:
+                       self.lines = [Line(e) for e in self.edges if not e.faces]
                else:
-                       smooth_limit = -1
+                       self.lines = []
 
-               for e in self.edges.values():
-                       e.vertices = [self.vertices[i] for i in e.vertices]
-                       e.check_smooth(smooth_limit)
+               self.vertex_sequence = []
 
-       def __getattr__(self, attr):
-               return getattr(self._mesh, attr)
+       def transform(self, matrix):
+               for v in self.vertices:
+                       v.co = matrix@v.co
 
        def splice(self, other):
-               material_map = []
+               if len(self.uv_layers)!=len(other.uv_layers):
+                       raise ValueError("Meshes have incompatible UV layers")
+               for i, u in enumerate(self.uv_layers):
+                       if u.name!=other.uv_layers[i].name:
+                               raise ValueError("Meshes have incompatible UV layers")
+
+               # Merge materials and form a lookup from source material indices to the
+               # merged material list
+               material_atlas = []
                for m in other.materials:
                        if m in self.materials:
-                               material_map.append(self.materials.index(m))
+                               material_atlas.append(self.materials.index(m))
                        else:
-                               material_map.append(len(self.materials))
+                               material_atlas.append(len(self.materials))
                                self.materials.append(m)
 
+               # Append data and adjust indices where necessary.  Since the data is
+               # spliced from the source mesh, rebuilding references is not necessary.
+               for i, u in enumerate(self.uv_layers):
+                       u.uvs += other.uv_layers[i].uvs
+
+               if self.colors:
+                       if other.colors:
+                               self.colors.colors += other.colors.colors
+                       else:
+                               self.colors.colors += [(1.0, 1.0, 1.0, 1.0)]*len(other.loops)
+               elif other.colors:
+                       self.colors = ColorLayer(other.colors.name)
+                       self.colors.colors = [(1.0, 1.0, 1.0, 1.0)]*len(self.loops)+other.colors.colors
+
                offset = len(self.vertices)
-               for v in other.vertices:
+               self.vertices += other.vertices
+               for v in self.vertices[offset:]:
                        v.index += offset
-                       self.vertices.append(v)
+
+               loop_offset = len(self.loops)
+               self.loops += other.loops
 
                offset = len(self.faces)
-               for f in other.faces:
+               self.faces += other.faces
+               for f in self.faces[offset:]:
                        f.index += offset
+                       f.loop_indices = range(f.loop_indices.start+offset, f.loop_indices.stop+offset)
                        if other.materials:
-                               f.material_index = material_map[f.material_index]
-                       self.faces.append(f)
+                               f.material_index = material_atlas[f.material_index]
 
-               for e in other.edges.values():
+               offset = len(self.edges)
+               self.edges += other.edges
+               for e in self.edges[offset:]:
+                       e.index += offset
                        e.key = make_edge_key(e.vertices[0].index, e.vertices[1].index)
-                       self.edges[e.key] = e
 
                self.lines += other.lines
 
-       def flatten_faces(self):
-               for f in self.faces:
-                       f.use_smooth = False
+       def prepare_triangles(self, progress):
+               face_count = len(self.faces)
+               for i in range(face_count):
+                       f = self.faces[i]
+                       nverts = len(f.vertices)
+                       if nverts==3:
+                               continue
+
+                       # Calculate normals at each vertex of the face
+                       edge_vecs = []
+                       for j in range(nverts):
+                               edge_vecs.append(f.vertices[(j+1)%nverts].co-f.vertices[j].co)
+
+                       normals = []
+                       for j in range(nverts):
+                               normals.append(edge_vecs[j-1].cross(edge_vecs[j]).normalized())
+
+                       # Check which diagonal results in a flatter triangulation
+                       flatness1 = normals[0].dot(normals[2])
+                       flatness2 = normals[1].dot(normals[3])
+                       cut_index = 1 if flatness1>flatness2 else 0
+
+                       nf = Face(f)
+                       nf.index = len(self.faces)
+                       self.faces.append(nf)
+
+                       ne = Edge(None)
+                       ne.index = len(self.edges)
+                       self.edges.append(ne)
+
+                       nf.vertices = [f.vertices[cut_index], f.vertices[2], f.vertices[3]]
+                       nf.loop_indices = [f.loop_indices[cut_index], f.loop_indices[2], f.loop_indices[3]]
+                       for v in nf.vertices:
+                               v.faces.append(nf)
+
+                       ne.vertices = [f.vertices[cut_index], f.vertices[2+cut_index]]
+                       for v in ne.vertices:
+                               v.edges.append(ne)
+                       ne.key = make_edge_key(ne.vertices[0].index, ne.vertices[1].index)
+                       ne.smooth = True
+
+                       f.vertices[3-cut_index].faces.remove(f)
+                       del f.vertices[3-cut_index]
+                       f.loop_indices = [f.loop_indices[0], f.loop_indices[1], f.loop_indices[2+cut_index]]
+
+                       ne.faces = [f, nf]
+                       if cut_index==0:
+                               nf.edges = [ne, f.edges[2], f.edges[3]]
+                               f.edges = [f.edges[0], f.edges[1], ne]
+                       else:
+                               nf.edges = [f.edges[1], f.edges[2], ne]
+                               f.edges = [f.edges[0], ne, f.edges[3]]
+                       for e in nf.edges:
+                               if e!=ne:
+                                       e.faces.remove(f)
+                                       e.faces.append(nf)
+
+                       f.normal = normals[1-cut_index]
+                       nf.normal = normals[3-cut_index]
+
+                       progress.set_progress(i/face_count)
+
+       def prepare_smoothing(self, progress):
+               smooth_limit = -1
+               if self.smoothing=='NONE':
+                       for f in self.faces:
+                               f.use_smooth = False
+
+                       smooth_limit = 1
+               elif self.use_auto_smooth:
+                       smooth_limit = math.cos(self.auto_smooth_angle)
+
+               for e in self.edges:
+                       e.check_smooth(smooth_limit)
 
-               for e in self.edges.values():
-                       e.check_smooth(1)
+               progress.push_task("Sharp edges", 0.0, 0.7)
+               self.split_vertices(self.find_smooth_group, progress)
+
+               if self.smoothing!='BLENDER':
+                       progress.set_task("Updating normals", 0.7, 1.0)
+                       self.compute_normals(progress)
+
+               progress.pop_task()
+
+       def prepare_vertex_groups(self, obj):
+               if not self.vertex_groups:
+                       return
+
+               for v in self.vertices:
+                       if v.groups:
+                               weight_sum = sum(g.weight for g in v.groups)
+                               v.groups = sorted(v.groups, key=(lambda g: g.weight), reverse=True)[:self.max_groups_per_vertex]
+                               weight_scale = weight_sum/sum(g.weight for g in v.groups)
+                               for g in v.groups:
+                                       g.weight *= weight_scale
+                       while len(v.groups)<self.max_groups_per_vertex:
+                               v.groups.append(VertexGroup(None))
+
+               if obj.parent and obj.parent.type=="ARMATURE":
+                       armature = obj.parent.data
+                       bone_indices = {b.name: i for i, b in enumerate(armature.bones)}
+                       group_index_map = {i: i for i in range(len(obj.vertex_groups))}
+                       for g in first_obj.vertex_groups:
+                               if g.name in bone_indices:
+                                       group_index_map[g.index] = bone_indices[g.name]
+
+                       for v in self.vertices:
+                               for g in v.groups:
+                                       g.group = group_index_map[g.group]
+
+       def apply_material_atlas(self, material_atlas):
+               for m in self.materials:
+                       if m.name not in material_atlas.material_names:
+                               raise Exception("Material atlas is not compatible with Mesh")
+
+               if self.use_uv=='NONE':
+                       return
 
-       def assign_texture_units(self):
-               # Assign texture units for any non-hidden UV layers that lack one
-               units = [u.unit for u in self.uv_layers if u.unit is not None]
-               if units:
-                       free_unit = max(units)+1
+               layer = UvLayer("material_atlas")
+               if self.use_uv=='UNIT0':
+                       self.uv_layers = [layer]
+                       layer.unit = 0
                else:
-                       free_unit = 0
-               for u in self.uv_layers:
-                       if u.unit is None:
-                               if not u.hidden:
-                                       u.unit = free_unit
-                                       free_unit += 1
-
-       def generate_material_uv(self):
-               self.uv_layers.append(FakeUvLayer("material_tex"))
-               self.assign_texture_units()
+                       self.uv_layers.append(layer)
+                       used_units = [u.unit for u in self.uv_layers]
+                       layer.unit = next(i for i in itertools.count() if i not in used_units)
+                       self.uv_layers.sort(key=lambda u: u.unit)
+
+               layer.uvs = [(0.0, 0.0)]*len(self.loops)
                for f in self.faces:
-                       f.uvs.append([((f.material_index+0.5)/len(self.materials), 0.5)]*len(f.vertices))
+                       uv = material_atlas.get_material_uv(self.materials[f.material_index])
+                       for i in f.loop_indices:
+                               layer.uvs[i] = uv
+
+       def prepare_uv(self, progress):
+               # Form a list of UV layers referenced by materials with the array atlas
+               # property set
+               array_uv_layers = [] #[t.uv_layer for m in self.materials if m.array_atlas for t in m.texture_slots if t and t.texture_coords=='UV']
+               array_uv_layers = [u for u in self.uv_layers if u.name in array_uv_layers]
+
+               if array_uv_layers:
+                       for f in self.faces:
+                               layer = 0
+                               if f.material_index<len(self.materials):
+                                       mat = self.materials[f.material_index]
+                                       if mat and mat.array_atlas:
+                                               layer = mat.array_layer
+
+                               for l in array_uv_layers:
+                                       for i in f.loop_indices:
+                                               l.uvs[i] = mathutils.Vector((*l.uvs[i], layer))
+
+               prog_count = len(self.uv_layers)
+               prog_step = 0
+
+               # Split by the UV layer used for tangent vectors first so connectivity
+               # remains intact for tangent vector computation
+               tangent_layer_index = -1
+               if self.tangent_vecs:
+                       if self.tangent_uvtex:
+                               uv_names = [u.name for u in self.uv_layers]
+                               if self.tangent_uvtex in uv_names:
+                                       tangent_layer_index = uv_names.index(self.tangent_uvtex)
+                       elif self.uv_layers[0].unit==0:
+                               tangent_layer_index = 0
+
+                       if tangent_layer_index>=0:
+                               prog_count += 1
+                               progress.push_task_slice("Computing tangents", 0, prog_count)
+                               self.split_vertices(self.find_uv_group, progress, tangent_layer_index)
+                               progress.set_task_slice(self.tangent_uvtex, 1, prog_count)
+                               self.compute_tangents(tangent_layer_index, progress)
+                               progress.pop_task()
+                               prog_step = 2
+                       else:
+                               raise Exception("Tangent UV layer not found")
+
+               # Split by the remaining UV layers
+               for i, u in enumerate(self.uv_layers):
+                       if i==tangent_layer_index:
+                               continue
+
+                       progress.push_task_slice(u.name, prog_step, prog_count)
+                       self.split_vertices(self.find_uv_group, progress, i)
+                       progress.pop_task()
+                       prog_step += 1
+
+               # Copy UVs from layers to vertices
+               for v in self.vertices:
+                       if v.faces:
+                               # All faces still connected to the vertex have the same UV value
+                               f = v.faces[0]
+                               i = f.get_loop_index(v)
+                               v.uvs = [u.uvs[i] for u in self.uv_layers]
+                       else:
+                               v.uvs = [(0.0, 0.0)]*len(self.uv_layers)
+
+       def prepare_colors(self, progress):
+               if not self.colors:
+                       return
+
+               self.split_vertices(self.find_color_group, progress)
+
+               for v in self.vertices:
+                       if v.faces:
+                               f = v.faces[0]
+                               v.color = self.colors.colors[f.get_loop_index(v)]
+                       else:
+                               v.color = (1.0, 1.0, 1.0, 1.0)
 
        def split_vertices(self, find_group_func, progress, *args):
-               groups = []
-               for i in range(len(self.vertices)):
+               vertex_count = len(self.vertices)
+               for i in range(vertex_count):
                        v = self.vertices[i]
                        for f in v.faces:
                                f.flag = False
 
-                       vg = []
+                       # Find all groups of faces on this vertex
+                       groups = []
                        for f in v.faces:
                                if not f.flag:
-                                       vg.append(find_group_func(v, f, *args))
+                                       groups.append(find_group_func(v, f, *args))
 
-                       groups.append(vg)
+                       # Give groups after the first separate copies of the vertex
+                       for g in groups[1:]:
+                               nv = Vertex(v)
+                               nv.index = len(self.vertices)
+                               self.vertices.append(nv)
 
-                       if progress:
-                               progress.set_progress(i*0.5/len(self.vertices))
+                               for e in v.edges:
+                                       e_faces_in_g = [f for f in e.faces if f in g]
+                                       if not e_faces_in_g:
+                                               continue
 
-               for i in range(len(self.vertices)):
-                       if len(groups[i])==1:
-                               continue
+                                       if len(e_faces_in_g)<len(e.faces):
+                                               # Create a copy of an edge at the boundary of the group
+                                               ne = Edge(e)
+                                               ne.index = len(self.edges)
+                                               self.edges.append(ne)
 
-                       for g in groups[i][1:]:
-                               v = Vertex(self.vertices[i])
-                               v.index = len(self.vertices)
-                               self.vertices.append(v)
-
-                               for f in g:
-                                       for j in range(len(f.edges)):
-                                               e = f.edges[j]
+                                               ne.other_vertex(v).edges.append(ne)
 
-                                               if self.vertices[i] not in e.vertices:
-                                                       continue
-
-                                               if e.other_face(f) not in g and len(e.faces)>=2:
+                                               for f in e_faces_in_g:
                                                        e.faces.remove(f)
-                                                       e = Edge(e)
-                                                       f.edges[j] = e
-                                                       e.faces.append(f)
-                                               else:
-                                                       del self.edges[e.key]
+                                                       f.edges[f.edges.index(e)] = ne
+                                                       ne.faces.append(f)
 
-                                               e.vertices[e.vertices.index(self.vertices[i])] = v
+                                               e = ne
 
-                                               e.key = make_edge_key(e.vertices[0].index, e.vertices[1].index)
-                                               self.edges[e.key] = e
+                                       e.vertices[e.vertices.index(v)] = nv
+                                       nv.edges.append(e)
 
-                                       self.vertices[i].faces.remove(f)
-                                       f.vertices[f.vertices.index(self.vertices[i])] = v
-                                       v.faces.append(f)
+                                       e.key = make_edge_key(e.vertices[0].index, e.vertices[1].index)
 
-                       if progress:
-                               progress.set_progress(0.5+i*0.5/len(self.vertices))
+                               # Filter out any edges that were removed from the original vertex
+                               v.edges = [e for e in v.edges if v in e.vertices]
 
-       def split_smooth(self, progress = None):
-               self.split_vertices(self.find_smooth_group, progress)
+                               for f in g:
+                                       v.faces.remove(f)
+                                       f.vertices[f.vertices.index(v)] = nv
+                                       nv.faces.append(f)
 
-       def split_uv(self, index, progress = None):
-               self.split_vertices(self.find_uv_group, progress, index)
+                       progress.set_progress(i/vertex_count)
 
        def find_smooth_group(self, vertex, face):
                face.flag = True
-               queue = [face]
 
-               for f in queue:
-                       for e in f.edges:
-                               other = e.other_face(f)
-                               if other not in vertex.faces:
-                                       continue
+               edges = [e for e in face.edges if vertex in e.vertices]
 
-                               if e.smooth:
-                                       if not other.flag:
-                                               other.flag = True
-                                               queue.append(other)
+               group = [face]
+               for e in edges:
+                       f = face
+                       while e.smooth:
+                               f = e.other_face(f)
+                               if not f or f.flag:
+                                       break
 
-               return queue
+                               f.flag = True
+                               group.append(f)
+                               e = f.other_edge(e, vertex)
+
+               return group
 
        def find_uv_group(self, vertex, face, index):
-               uv = face.uvs[index][face.vertices.index(vertex)]
+               layer = self.uv_layers[index]
+               uv = layer.uvs[face.get_loop_index(vertex)]
                face.flag = True
+
                group = [face]
                for f in vertex.faces:
-                       if not f.flag and f.uvs[index][f.vertices.index(vertex)]==uv:
+                       if not f.flag and layer.uvs[f.get_loop_index(vertex)]==uv:
                                f.flag = True
                                group.append(f)
+
                return group
 
-       def compute_normals(self):
-               for v in self.vertices:
-                       if v.faces:
-                               v.normal = mathutils.Vector()
-                               for f in v.faces:
-                                       fv = f.pivot_vertices(v)
-                                       edge1 = fv[1].co-fv[0].co
-                                       edge2 = fv[-1].co-fv[0].co
-                                       weight = 1
-                                       if len(f.get_edge(fv[0], fv[1]).faces)==1:
-                                               weight += 1
-                                       if len(f.get_edge(fv[0], fv[-1]).faces)==1:
-                                               weight += 1
-                                       v.normal += f.normal*edge1.angle(edge2)*weight
+       def find_color_group(self, vertex, face):
+               color = self.colors.colors[face.get_loop_index(vertex)]
+               face.flag = True
+
+               group = [face]
+               for f in vertex.faces:
+                       if not f.flag and self.colors.colors[f.get_loop_index(vertex)]==color:
+                               f.flag = True
+                               group.append(f)
+
+               return group
+
+       def compute_normals(self, progress):
+               for i, v in enumerate(self.vertices):
+                       v.normal = mathutils.Vector()
+                       for f in v.faces:
+                               vi = f.pivot_vertex(v)
+                               edge1 = f.vertices[vi[1]].co-v.co
+                               edge2 = f.vertices[vi[-1]].co-v.co
+                               if edge1.length and edge2.length:
+                                       # Use the angle between edges as a weighting factor.  This gives
+                                       # more consistent normals on bends with an inequal number of
+                                       # faces on each side.
+                                       v.normal += f.normal*edge1.angle(edge2)
+
+                       if v.normal.length:
                                v.normal.normalize()
                        else:
-                               # XXX Should use edges to compute normal
-                               v.normal = mathutils.Vector(0, 0, 1)
+                               v.normal = mathutils.Vector((0, 0, 1))
 
-       def compute_uv(self):
-               for v in self.vertices:
-                       if v.faces:
-                               f = v.faces[0]
-                               i = f.vertices.index(v)
-                               v.uvs = [u[i] for u in f.uvs]
+                       progress.set_progress(i/len(self.vertices))
 
-       def compute_tbn(self, index):
-               if not self.uv_layers:
-                       return
+       def compute_tangents(self, index, progress):
+               layer_uvs = self.uv_layers[index].uvs
 
-               for v in self.vertices:
+               for i, v in enumerate(self.vertices):
                        v.tan = mathutils.Vector()
-                       v.bino = mathutils.Vector()
                        for f in v.faces:
-                               fv = f.pivot_vertices(v)
-                               uv0 = fv[0].uvs[index]
-                               uv1 = fv[1].uvs[index]
-                               uv2 = fv[-1].uvs[index]
+                               vi = f.pivot_vertex(v)
+                               uv0 = layer_uvs[f.loop_indices[vi[0]]]
+                               uv1 = layer_uvs[f.loop_indices[vi[1]]]
+                               uv2 = layer_uvs[f.loop_indices[vi[-1]]]
                                du1 = uv1[0]-uv0[0]
                                du2 = uv2[0]-uv0[0]
                                dv1 = uv1[1]-uv0[1]
                                dv2 = uv2[1]-uv0[1]
-                               edge1 = fv[1].co-fv[0].co
-                               edge2 = fv[-1].co-fv[0].co
+                               edge1 = f.vertices[vi[1]].co-f.vertices[vi[0]].co
+                               edge2 = f.vertices[vi[-1]].co-f.vertices[vi[0]].co
                                div = (du1*dv2-du2*dv1)
                                if div:
                                        mul = edge1.angle(edge2)/div
                                        v.tan += (edge1*dv2-edge2*dv1)*mul
-                                       v.bino += (edge2*du1-edge1*du2)*mul
 
                        if v.tan.length:
                                v.tan.normalize()
-                       if v.bino.length:
-                               v.bino.normalize()
 
-       def sort_vertex_groups(self, max_groups):
-               for v in self.vertices:
-                       if v.groups:
-                               v.groups = sorted(v.groups, key=(lambda g: g.weight), reverse=True)
-                               v.group_weight_scale = 1.0/sum(g.weight for g in v.groups[:max_groups])
-
-       def create_strip(self, face, max_len):
-               # Find an edge with another unused face next to it
-               edge = None
-               for e in face.edges:
-                       other = e.other_face(face)
-                       if other and not other.flag:
-                               edge = e
-                               break
+                       progress.set_progress(i/len(self.vertices))
+
+       def prepare_sequence(self, progress):
+               progress.push_task("Reordering faces", 0.0, 0.5)
+               self.reorder_faces(progress)
+
+               progress.set_task("Building sequence", 0.5, 1.0)
+               sequence = None
+               for i, f in enumerate(self.faces):
+                       if sequence:
+                               if len(sequence)==3:
+                                       # Rotate the first three vertices so that the new face can be added
+                                       if sequence[0] in f.vertices and sequence[1] not in f.vertices:
+                                               sequence.append(sequence[0])
+                                               del sequence[0]
+                                       elif sequence[2] not in f.vertices and sequence[1] in f.vertices:
+                                               sequence.insert(0, sequence[-1])
+                                               del sequence[-1]
+
+                               if sequence[-1] not in f.vertices:
+                                       sequence = None
+                               else:
+                                       to_add = [v for v in f.vertices if v!=sequence[-1] and v!=sequence[-2]]
+                                       if len(to_add)==2:
+                                               if (f.vertices[1]==sequence[-1]) != (len(sequence)%2==1):
+                                                       to_add.reverse()
+                                               sequence.append(sequence[-1])
+                                       sequence += to_add
+
+                       if not sequence:
+                               sequence = f.vertices[:]
+                               self.vertex_sequence.append(sequence)
+
+                       progress.set_progress(i/len(self.faces))
+
+               progress.pop_task()
+
+               self.reorder_vertices()
+
+       def reorder_faces(self, progress):
+               # Tom Forsyth's vertex cache optimization algorithm
+               # http://eelpi.gotdns.org/papers/fast_vert_cache_opt.html
 
-               if not edge:
-                       return None
+               for f in self.faces:
+                       f.flag = False
 
-               # Add initial vertices so that we'll complete the edge on the first
-               # iteration
-               vertices = face.pivot_vertices(*edge.vertices)
-               if len(vertices)==3:
-                       result = [vertices[-1], vertices[0]]
-               else:
-                       result = [vertices[-2], vertices[-1]]
+               last_triangle_score = 0.75
+               cache_decay_power = 1.5
+               valence_boost_scale = 2.0
+               valence_boost_power = -0.5
+
+               max_cache_size = 32
+               cached_vertices = []
 
+               # Keep track of the score and number of unused faces for each vertex
+               vertex_info = [[0, len(v.faces)] for v in self.vertices]
+               for vi in vertex_info:
+                       vi[0] = valence_boost_scale*(vi[1]**valence_boost_power)
+
+               face = None
+               reordered_faces = []
+
+               n_processed = 0
                while 1:
+                       if not face:
+                               # Previous iteration gave no candidate for best face (or this is
+                               # the first iteration).  Scan all faces for the highest score.
+                               best_score = 0
+                               for f in self.faces:
+                                       if f.flag:
+                                               continue
+
+                                       score = sum(vertex_info[v.index][0] for v in f.vertices)
+                                       if score>best_score:
+                                               best_score = score
+                                               face = f
+
+                       if not face:
+                               break
+
+                       reordered_faces.append(face)
                        face.flag = True
 
-                       vertices = face.pivot_vertices(*result[-2:])
-                       k = len(result)%2
+                       for v in face.vertices:
+                               vertex_info[v.index][1] -= 1
+
+                               # Shuffle the vertex into the front of the cache
+                               if v in cached_vertices:
+                                       cached_vertices.remove(v)
+                               cached_vertices.insert(0, v)
+
+                       # Update scores for all vertices in the cache
+                       for i, v in enumerate(cached_vertices):
+                               score = 0
+                               if i<3:
+                                       score += last_triangle_score
+                               elif i<max_cache_size:
+                                       score += (1-(i-3)/(max_cache_size-3))**cache_decay_power
+                               if vertex_info[v.index][1]:
+                                       score += valence_boost_scale*(vertex_info[v.index][1]**valence_boost_power)
+                               vertex_info[v.index][0] = score
+
+                       face = None
+                       best_score = 0
+                       for v in cached_vertices:
+                               for f in v.faces:
+                                       if not f.flag:
+                                               score = sum(vertex_info[fv.index][0] for fv in f.vertices)
+                                               if score>best_score:
+                                                       best_score = score
+                                                       face = f
 
-                       # Quads need special handling because the winding of every other
-                       # triangle in the strip is reversed
-                       if len(vertices)==4 and not k:
-                               result.append(vertices[3])
-                       result.append(vertices[2])
-                       if len(vertices)==4 and k:
-                               result.append(vertices[3])
+                       del cached_vertices[max_cache_size:]
 
-                       if len(result)>=max_len:
-                               break
+                       n_processed += 1
+                       progress.set_progress(n_processed/len(self.faces))
 
-                       # Hop over the last edge
-                       edge = face.get_edge(*result[-2:])
-                       face = edge.other_face(face)
-                       if not face or face.flag:
-                               break
+               self.faces = reordered_faces
+               for i, f in enumerate(self.faces):
+                       f.index = i
+
+       def reorder_vertices(self):
+               for v in self.vertices:
+                       v.index = -1
+
+               reordered_vertices = []
+               for s in self.vertex_sequence:
+                       for v in s:
+                               if v.index<0:
+                                       v.index = len(reordered_vertices)
+                                       reordered_vertices.append(v)
+
+               self.vertices = reordered_vertices
+
+               for e in self.edges:
+                       e.key = make_edge_key(e.vertices[0].index, e.vertices[1].index)
+
+
+def create_mesh_from_object(context, obj, progress, *, material_atlas=None):
+       if obj.type!="MESH":
+               raise Exception("Object is not a mesh")
+
+       progress.push_task("Preparing mesh", 0.0, 0.2)
+
+       objs = [(obj, mathutils.Matrix())]
+       i = 0
+       while i<len(objs):
+               o, m = objs[i]
+               i += 1
+               for c in o.children:
+                       if c.type=="MESH" and c.compound:
+                               objs.append((c, m*c.matrix_local))
+
+       dg = context.evaluated_depsgraph_get()
+
+       mesh = None
+       for o, m in objs:
+               eval_obj = o.evaluated_get(dg)
+               bmesh = eval_obj.to_mesh()
+
+               # Object.to_mesh does not copy custom properties
+               bmesh.winding_test = o.data.winding_test
+               bmesh.smoothing = o.data.smoothing
+               bmesh.use_lines = o.data.use_lines
+               bmesh.vertex_groups = o.data.vertex_groups
+               bmesh.max_groups_per_vertex = o.data.max_groups_per_vertex
+               bmesh.use_uv = o.data.use_uv
+               bmesh.tangent_vecs = o.data.tangent_vecs
+               bmesh.tangent_uvtex = o.data.tangent_uvtex
+
+               me = Mesh(bmesh)
+               me.transform(m)
+
+               for i, s in enumerate(eval_obj.material_slots):
+                       if s.link=='OBJECT':
+                               me.materials[i] = s.material
+
+               if mesh:
+                       mesh.splice(me)
+               else:
+                       mesh = me
+
+       mesh.name = obj.data.name
+
+       if material_atlas:
+               mesh.apply_material_atlas(material_atlas)
+
+       progress.set_task("Triangulating", 0.2, 0.3)
+       mesh.prepare_triangles(progress)
+       progress.set_task("Smoothing", 0.3, 0.5)
+       mesh.prepare_smoothing(progress)
+       progress.set_task("Vertex groups", 0.5, 0.6)
+       mesh.prepare_vertex_groups(obj)
+       progress.set_task("Preparing UVs", 0.6, 0.75)
+       mesh.prepare_uv(progress)
+       progress.set_task("Preparing vertex colors", 0.75, 0.85)
+       mesh.prepare_colors(progress)
+       progress.set_task("Render sequence", 0.85, 1.0)
+       mesh.prepare_sequence(progress)
+
+       progress.pop_task()
 
-               return result
+       return mesh