X-Git-Url: http://git.tdb.fi/?p=libs%2Fgl.git;a=blobdiff_plain;f=source%2Fglsl%2Foptimize.cpp;h=6e4b56771fa3222ce778a53d37b828b5d34554cf;hp=1ebb87c5c2ea23360c33917104745273de6d8da0;hb=HEAD;hpb=bd8816692056230c36504dcccd76c6946dff47b1 diff --git a/source/glsl/optimize.cpp b/source/glsl/optimize.cpp index 1ebb87c5..a35e2cd2 100644 --- a/source/glsl/optimize.cpp +++ b/source/glsl/optimize.cpp @@ -1,5 +1,9 @@ +#include #include +#include +#include #include "optimize.h" +#include "reflect.h" using namespace std; @@ -7,443 +11,1556 @@ namespace Msp { namespace GL { namespace SL { -InlineableFunctionLocator::InlineableFunctionLocator(): - in_function(0) -{ } +void ConstantSpecializer::apply(Stage &stage, const map &v) +{ + values = &v; + stage.content.visit(*this); +} + +void ConstantSpecializer::visit(VariableDeclaration &var) +{ + bool specializable = false; + if(var.layout) + { + vector &qualifiers = var.layout->qualifiers; + auto i = find_member(qualifiers, string("constant_id"), &Layout::Qualifier::name); + if(i!=qualifiers.end()) + { + specializable = true; + qualifiers.erase(i); + if(qualifiers.empty()) + var.layout = 0; + } + } + + if(specializable) + { + auto i = values->find(var.name); + if(i!=values->end()) + { + RefPtr literal = new Literal; + if(var.type=="bool") + { + literal->token = (i->second ? "true" : "false"); + literal->value = static_cast(i->second); + } + else if(var.type=="int") + { + literal->token = lexical_cast(i->second); + literal->value = i->second; + } + var.init_expression = literal; + } + } +} + + +void InlineableFunctionLocator::visit(FunctionCall &call) +{ + FunctionDeclaration *def = call.declaration; + if(def) + def = def->definition; + + if(def) + { + unsigned &count = refcounts[def]; + ++count; + /* Don't inline functions which are called more than once or are called + recursively. */ + if((count>1 && def->source!=BUILTIN_SOURCE) || def==current_function) + inlineable.erase(def); + } + + TraversingVisitor::visit(call); +} + +void InlineableFunctionLocator::visit(FunctionDeclaration &func) +{ + bool has_out_params = any_of(func.parameters.begin(), func.parameters.end(), + [](const RefPtr &p){ return p->interface=="out"; }); + + unsigned &count = refcounts[func.definition]; + if((count<=1 || func.source==BUILTIN_SOURCE) && !has_out_params) + inlineable.insert(func.definition); + + SetForScope set(current_function, &func); + return_count = 0; + TraversingVisitor::visit(func); +} + +void InlineableFunctionLocator::visit(Conditional &cond) +{ + TraversingVisitor::visit(cond); + inlineable.erase(current_function); +} + +void InlineableFunctionLocator::visit(Iteration &iter) +{ + TraversingVisitor::visit(iter); + inlineable.erase(current_function); +} + +void InlineableFunctionLocator::visit(Return &ret) +{ + TraversingVisitor::visit(ret); + if(return_count) + inlineable.erase(current_function); + ++return_count; +} + + +string InlineContentInjector::apply(Stage &stage, FunctionDeclaration &target_func, Block &tgt_blk, const NodeList::iterator &ins_pt, FunctionCall &call) +{ + source_func = call.declaration->definition; + + /* Populate referenced_names from the target function so we can rename + variables from the inlined function that would conflict. Only consider + names declared in blocks linearly related to the target block. */ + pass = REFERENCED; + tgt_blk.visit(*this); + for(const Block *b=&tgt_blk; b; b=b->parent) + for(const auto &kvp: b->variables) + referenced_names.insert(kvp.first); + for(const auto &kvp: stage.interface_blocks) + if(kvp.second->name.find(' ')!=string::npos) + for(const auto &kvp2: kvp.second->block_declaration->members.variables) + referenced_names.insert(kvp2.first); + + /* Inline and rename passes must be interleaved so used variable names are + known when inlining the return statement. */ + pass = INLINE; + staging_block.parent = &tgt_blk; + staging_block.variables.clear(); + + vector > params; + params.reserve(source_func->parameters.size()); + for(const RefPtr &p: source_func->parameters) + { + RefPtr var = p->clone(); + var->interface.clear(); + + SetForScope set_pass(pass, RENAME); + var->visit(*this); + + staging_block.body.push_back_nocopy(var); + params.push_back(var); + } + + for(const RefPtr &s: source_func->body.body) + { + r_inlined_statement = 0; + s->visit(*this); + if(!r_inlined_statement) + r_inlined_statement = s->clone(); + + SetForScope set_pass(pass, RENAME); + r_inlined_statement->visit(*this); + + staging_block.body.push_back_nocopy(r_inlined_statement); + } + + /* Now collect names from the staging block. Local variables that would + have conflicted with the target function were renamed earlier. */ + pass = REFERENCED; + referenced_names.clear(); + staging_block.variables.clear(); + staging_block.visit(*this); + + /* Rename variables in the target function so they don't interfere with + global identifiers used by the source function. */ + pass = RENAME; + staging_block.parent = source_func->body.parent; + target_func.visit(*this); + + // Put the argument expressions in place after all renaming has been done. + for(unsigned i=0; iparameters.size(); ++i) + params[i]->init_expression = call.arguments[i]->clone(); + + tgt_blk.body.splice(ins_pt, staging_block.body); + + NodeReorderer().apply(stage, target_func, DependencyCollector().apply(*source_func)); + + return r_result_name; +} + +void InlineContentInjector::visit(VariableReference &var) +{ + if(pass==RENAME) + { + auto i = staging_block.variables.find(var.name); + if(i!=staging_block.variables.end()) + var.name = i->second->name; + } + else if(pass==REFERENCED) + referenced_names.insert(var.name); +} + +void InlineContentInjector::visit(FunctionCall &call) +{ + if(pass==REFERENCED) + referenced_names.insert(call.name); + TraversingVisitor::visit(call); +} + +void InlineContentInjector::visit(VariableDeclaration &var) +{ + TraversingVisitor::visit(var); + + if(pass==RENAME) + { + /* Check against conflicts with the other context as well as variables + already renamed here. */ + bool conflict = (staging_block.variables.count(var.name) || referenced_names.count(var.name)); + staging_block.variables[var.name] = &var; + if(conflict) + { + string mapped_name = get_unused_variable_name(staging_block, var.name); + if(mapped_name!=var.name) + { + staging_block.variables[mapped_name] = &var; + var.name = mapped_name; + } + } + } + else if(pass==REFERENCED) + referenced_names.insert(var.type); +} + +void InlineContentInjector::visit(Return &ret) +{ + TraversingVisitor::visit(ret); + + if(pass==INLINE && ret.expression) + { + // Create a new variable to hold the return value of the inlined function. + r_result_name = get_unused_variable_name(staging_block, "_return"); + RefPtr var = new VariableDeclaration; + var->source = ret.source; + var->line = ret.line; + var->type = source_func->return_type; + var->name = r_result_name; + var->init_expression = ret.expression->clone(); + r_inlined_statement = var; + } +} + + +bool FunctionInliner::apply(Stage &s) +{ + stage = &s; + inlineable = InlineableFunctionLocator().apply(s); + r_any_inlined = false; + s.content.visit(*this); + return r_any_inlined; +} + +void FunctionInliner::visit(RefPtr &ptr) +{ + r_inline_result = 0; + ptr->visit(*this); + if(r_inline_result) + { + ptr = r_inline_result; + r_any_inlined = true; + } + r_inline_result = 0; +} + +void FunctionInliner::visit(Block &block) +{ + SetForScope set_block(current_block, &block); + SetForScope::iterator> save_insert_point(insert_point, block.body.begin()); + for(auto i=block.body.begin(); (!r_inlined_here && i!=block.body.end()); ++i) + { + insert_point = i; + (*i)->visit(*this); + } +} + +void FunctionInliner::visit(FunctionCall &call) +{ + for(auto i=call.arguments.begin(); (!r_inlined_here && i!=call.arguments.end()); ++i) + visit(*i); + + if(r_inlined_here) + return; + + FunctionDeclaration *def = call.declaration; + if(def) + def = def->definition; + + if(def && inlineable.count(def)) + { + string result_name = InlineContentInjector().apply(*stage, *current_function, *current_block, insert_point, call); + + // This will later get removed by UnusedVariableRemover. + if(result_name.empty()) + result_name = "_msp_unused_from_inline"; + + RefPtr ref = new VariableReference; + ref->name = result_name; + r_inline_result = ref; + + /* Inlined variables need to be resolved before this function can be + inlined further. */ + inlineable.erase(current_function); + r_inlined_here = true; + } +} + +void FunctionInliner::visit(FunctionDeclaration &func) +{ + SetForScope set_func(current_function, &func); + TraversingVisitor::visit(func); + r_inlined_here = false; +} + +void FunctionInliner::visit(Iteration &iter) +{ + /* Visit the initialization statement before entering the loop body so the + inlined statements get inserted outside. */ + if(iter.init_statement) + iter.init_statement->visit(*this); + + SetForScope set_block(current_block, &iter.body); + /* Skip the condition and loop expression parts because they're not properly + inside the body block. Inlining anything into them will require a more + comprehensive transformation. */ + iter.body.visit(*this); +} + + +bool ExpressionInliner::apply(Stage &s) +{ + s.content.visit(*this); + + bool any_inlined = false; + for(ExpressionInfo &e: expressions) + if(e.expression && (e.trivial || e.uses.size()==1)) + { + for(ExpressionUse &u: e.uses) + if(!u.blocked) + { + *u.reference = e.expression->clone(); + any_inlined = true; + } + } + + return any_inlined; +} + +void ExpressionInliner::visit(RefPtr &expr) +{ + r_ref_info = 0; + expr->visit(*this); + if(r_ref_info && r_ref_info->expression) + { + ExpressionUse use; + use.reference = &expr; + use.ref_scope = current_block; + use.blocked = access_write || r_ref_info->blocked; + + if(iteration_body && !r_ref_info->trivial) + { + /* Block inlining of non-trivial expressions assigned outside an + iteration statement. The iteration may run multiple times, which + would cause the expression to also be evaluated multiple times. */ + for(Block *i=iteration_body->parent; (!use.blocked && i); i=i->parent) + use.blocked = (i==r_ref_info->assign_scope); + } + + /* Block inlining assignments from from inner scopes. The assignment may + depend on local variables of that scope or may not always be executed. */ + for(Block *i=r_ref_info->assign_scope->parent; (!use.blocked && i); i=i->parent) + use.blocked = (i==current_block); + + r_ref_info->uses.push_back(use); + } + r_oper = expr->oper; + r_ref_info = 0; +} + +void ExpressionInliner::visit(VariableReference &var) +{ + if(var.declaration && access_read) + { + auto i = assignments.find(var.declaration); + if(i!=assignments.end()) + r_ref_info = i->second; + } +} + +void ExpressionInliner::visit(MemberAccess &memacc) +{ + visit(memacc.left); + r_trivial = false; +} + +void ExpressionInliner::visit(Swizzle &swizzle) +{ + visit(swizzle.left); + r_trivial = false; +} + +void ExpressionInliner::visit(UnaryExpression &unary) +{ + SetFlag set_write(access_write, (unary.oper->token[1]=='+' || unary.oper->token[1]=='-')); + visit(unary.expression); + r_trivial = false; +} + +void ExpressionInliner::visit(BinaryExpression &binary) +{ + visit(binary.left); + { + SetFlag clear_write(access_write, false); + visit(binary.right); + } + r_trivial = false; +} + +void ExpressionInliner::visit(Assignment &assign) +{ + { + SetFlag set_read(access_read, assign.oper->token[0]!='='); + SetFlag set_write(access_write); + visit(assign.left); + } + r_oper = 0; + r_trivial = true; + visit(assign.right); + + auto i = assignments.find(assign.target.declaration); + if(i!=assignments.end()) + { + if(iteration_body && i->second && i->second->expression) + { + /* Block inlining into previous references within the iteration + statement. On iterations after the first they would refer to the + assignment within the iteration. */ + for(ExpressionUse &u: i->second->uses) + for(Block *k=u.ref_scope; (!u.blocked && k); k=k->parent) + u.blocked = (k==iteration_body); + } + + for(; (i!=assignments.end() && i->first.declaration==assign.target.declaration); ++i) + if(targets_overlap(i->first, assign.target)) + i->second->blocked = true; + + expressions.emplace_back(); + ExpressionInfo &info = expressions.back(); + info.target = assign.target; + // Self-referencing assignments can't be inlined without additional work. + if(!assign.self_referencing) + info.expression = assign.right; + info.assign_scope = current_block; + info.trivial = r_trivial; + + assignments[assign.target] = &info; + } + + r_trivial = false; +} + +void ExpressionInliner::visit(TernaryExpression &ternary) +{ + visit(ternary.condition); + visit(ternary.true_expr); + visit(ternary.false_expr); + r_trivial = false; +} + +void ExpressionInliner::visit(FunctionCall &call) +{ + TraversingVisitor::visit(call); + r_trivial = false; +} + +void ExpressionInliner::visit(VariableDeclaration &var) +{ + r_oper = 0; + r_trivial = true; + TraversingVisitor::visit(var); + + bool constant = var.constant; + if(constant && var.layout) + { + constant = !any_of(var.layout->qualifiers.begin(), var.layout->qualifiers.end(), + [](const Layout::Qualifier &q){ return q.name=="constant_id"; }); + } + + /* Only inline global variables if they're constant and have trivial + initializers. Non-constant variables could change in ways which are hard to + analyze and non-trivial expressions could be expensive to inline. */ + if((current_block->parent || (constant && r_trivial)) && var.interface.empty()) + { + expressions.emplace_back(); + ExpressionInfo &info = expressions.back(); + info.target = &var; + /* Assume variables declared in an iteration initialization statement + will have their values change throughout the iteration. */ + if(!iteration_init) + info.expression = var.init_expression; + info.assign_scope = current_block; + info.trivial = r_trivial; + + assignments[&var] = &info; + } +} + +void ExpressionInliner::visit(Iteration &iter) +{ + SetForScope set_block(current_block, &iter.body); + if(iter.init_statement) + { + SetFlag set_init(iteration_init); + iter.init_statement->visit(*this); + } + + SetForScope set_body(iteration_body, &iter.body); + if(iter.condition) + visit(iter.condition); + iter.body.visit(*this); + if(iter.loop_expression) + visit(iter.loop_expression); +} + + +bool AggregateDismantler::apply(Stage &stage) +{ + stage.content.visit(*this); + + bool any_dismantled = false; + for(const auto &kvp: aggregates) + { + if(kvp.second.referenced || !kvp.second.members_referenced) + continue; + + for(const AggregateMember &m: kvp.second.members) + { + string name; + if(m.declaration) + name = format("%s_%s", kvp.second.declaration->name, m.declaration->name); + else + name = format("%s_%d", kvp.second.declaration->name, m.index); + + VariableDeclaration *var = new VariableDeclaration; + var->source = kvp.first->source; + var->line = kvp.first->line; + var->name = get_unused_variable_name(*kvp.second.decl_scope, name); + /* XXX This is kind of brittle and depends on the array declaration's + textual type not having brackets in it. */ + var->type = (m.declaration ? m.declaration : kvp.second.declaration)->type; + if(m.initializer) + var->init_expression = m.initializer->clone(); + + kvp.second.decl_scope->body.insert(kvp.second.insert_point, var); + + for(RefPtr *r: m.references) + { + VariableReference *ref = new VariableReference; + ref->name = var->name; + *r = ref; + } + + any_dismantled = true; + } + } + + return any_dismantled; +} + +void AggregateDismantler::visit(Block &block) +{ + SetForScope set_block(current_block, &block); + for(auto i=block.body.begin(); i!=block.body.end(); ++i) + { + insert_point = i; + (*i)->visit(*this); + } +} + +void AggregateDismantler::visit(RefPtr &expr) +{ + r_aggregate_ref = 0; + expr->visit(*this); + if(r_aggregate_ref && r_reference.chain_len==1) + { + if((r_reference.chain[0]&0x3F)!=0x3F) + { + r_aggregate_ref->members[r_reference.chain[0]&0x3F].references.push_back(&expr); + r_aggregate_ref->members_referenced = true; + } + else + /* If the accessed member is not known, mark the entire aggregate as + referenced. */ + r_aggregate_ref->referenced = true; + } + r_aggregate_ref = 0; +} + +void AggregateDismantler::visit(VariableReference &var) +{ + if(composite_reference) + r_reference.declaration = var.declaration; + else + { + /* If an aggregate variable is referenced as a whole, it should not be + dismantled. */ + auto i = aggregates.find(var.declaration); + if(i!=aggregates.end()) + i->second.referenced = true; + } +} + +void AggregateDismantler::visit_composite(RefPtr &expr) +{ + if(!composite_reference) + r_reference = Assignment::Target(); + + SetFlag set_composite(composite_reference); + visit(expr); +} + +void AggregateDismantler::visit(MemberAccess &memacc) +{ + visit_composite(memacc.left); + + add_to_chain(r_reference, Assignment::Target::MEMBER, memacc.index); + + if(r_reference.declaration && r_reference.chain_len==1) + { + auto i = aggregates.find(r_reference.declaration); + r_aggregate_ref = (i!=aggregates.end() ? &i->second : 0); + } + else + r_aggregate_ref = 0; +} + +void AggregateDismantler::visit(BinaryExpression &binary) +{ + if(binary.oper->token[0]=='[') + { + visit_composite(binary.left); + { + SetFlag clear_composite(composite_reference, false); + visit(binary.right); + } + + unsigned index = 0x3F; + if(Literal *literal_subscript = dynamic_cast(binary.right.get())) + if(literal_subscript->value.check_type()) + index = literal_subscript->value.value(); + add_to_chain(r_reference, Assignment::Target::ARRAY, index); + + if(r_reference.declaration && r_reference.chain_len==1) + { + auto i = aggregates.find(r_reference.declaration); + r_aggregate_ref = (i!=aggregates.end() ? &i->second : 0); + } + else + r_aggregate_ref = 0; + } + else + { + SetFlag clear_composite(composite_reference, false); + TraversingVisitor::visit(binary); + } +} + +void AggregateDismantler::visit(VariableDeclaration &var) +{ + TraversingVisitor::visit(var); + + if(var.interface.empty()) + { + if(const StructDeclaration *strct = dynamic_cast(var.type_declaration)) + { + const FunctionCall *init_call = dynamic_cast(var.init_expression.get()); + if((init_call && init_call->constructor) || !var.init_expression) + { + + Aggregate &aggre = aggregates[&var]; + aggre.declaration = &var; + aggre.decl_scope = current_block; + aggre.insert_point = insert_point; + + unsigned i = 0; + for(const RefPtr &s: strct->members.body) + { + if(const VariableDeclaration *mem_decl = dynamic_cast(s.get())) + { + AggregateMember member; + member.declaration = mem_decl; + member.index = i; + if(init_call) + member.initializer = init_call->arguments[i]; + aggre.members.push_back(member); + } + ++i; + } + } + } + else if(const Literal *literal_size = dynamic_cast(var.array_size.get())) + { + if(literal_size->value.check_type()) + { + Aggregate &aggre = aggregates[&var]; + aggre.declaration = &var; + aggre.decl_scope = current_block; + aggre.insert_point = insert_point; + + int size = literal_size->value.value(); + for(int i=0; idefinition!=def) - def = def->definition; + func.body.visit(*this); +} - if(def) + +template +T ConstantFolder::evaluate_logical(char oper, T left, T right) +{ + switch(oper) { - unsigned &count = refcounts[def]; - ++count; - if(count>1 || def==in_function) - inlineable.erase(def); + case '&': return left&right; + case '|': return left|right; + case '^': return left^right; + default: return T(); } - - TraversingVisitor::visit(call); } -void InlineableFunctionLocator::visit(FunctionDeclaration &func) +template +bool ConstantFolder::evaluate_relation(const char *oper, T left, T right) { - unsigned &count = refcounts[func.definition]; - if(!count && func.parameters.empty()) - inlineable.insert(func.definition); + switch(oper[0]|oper[1]) + { + case '<': return left': return left>right; + case '>'|'=': return left>=right; + default: return false; + } +} - SetForScope set(in_function, &func); - TraversingVisitor::visit(func); +template +T ConstantFolder::evaluate_arithmetic(char oper, T left, T right) +{ + switch(oper) + { + case '+': return left+right; + case '-': return left-right; + case '*': return left*right; + case '/': return left/right; + default: return T(); + } } +template +T ConstantFolder::evaluate_int_special_op(char oper, T left, T right) +{ + switch(oper) + { + case '%': return left%right; + case '<': return left<': return left>>right; + default: return T(); + } +} -FunctionInliner::FunctionInliner(): - extract_result(0) -{ } +template +void ConstantFolder::convert_to_result(const Variant &value) +{ + if(value.check_type()) + set_result(static_cast(value.value())); + else if(value.check_type()) + set_result(static_cast(value.value())); + else if(value.check_type()) + set_result(static_cast(value.value())); + else if(value.check_type()) + set_result(static_cast(value.value())); +} -void FunctionInliner::apply(Stage &stage) +void ConstantFolder::set_result(const Variant &value, bool literal) { - inlineable = InlineableFunctionLocator().apply(stage); - stage.content.visit(*this); + r_constant_value = value; + r_constant = true; + r_literal = literal; } -void FunctionInliner::visit_and_inline(RefPtr &ptr) +void ConstantFolder::visit(RefPtr &expr) { - inline_result = 0; - ptr->visit(*this); - if(inline_result) - ptr = inline_result; + r_constant_value = Variant(); + r_constant = false; + r_literal = false; + r_uses_iter_var = false; + expr->visit(*this); + /* Don't replace literals since they'd only be replaced with an identical + literal. Also skip anything that uses an iteration variable, but pass on + the result so the Iteration visiting function can handle it. */ + if(!r_constant || r_literal || r_uses_iter_var) + return; + + RefPtr literal = new Literal; + if(r_constant_value.check_type()) + literal->token = (r_constant_value.value() ? "true" : "false"); + else if(r_constant_value.check_type()) + literal->token = lexical_cast(r_constant_value.value()); + else if(r_constant_value.check_type()) + literal->token = lexical_cast(r_constant_value.value())+"u"; + else if(r_constant_value.check_type()) + { + literal->token = lexical_cast(r_constant_value.value(), Fmt().precision(8)); + if(literal->token.find('.')==string::npos && literal->token.find('e')==string::npos) + literal->token += ".0"; + } + else + { + r_constant = false; + return; + } + literal->value = r_constant_value; + expr = literal; + r_any_folded = true; } -void FunctionInliner::visit(Block &block) +void ConstantFolder::visit(Literal &literal) { - if(extract_result) - --extract_result; + set_result(literal.value, true); +} - for(NodeList::iterator i=block.body.begin(); i!=block.body.end(); ++i) +void ConstantFolder::visit(VariableReference &var) +{ + /* If an iteration variable is initialized with a constant value, return + that value here for the purpose of evaluating the loop condition for the + first iteration. */ + if(var.declaration==iteration_var) { - (*i)->visit(*this); - if(extract_result) - --extract_result; + set_result(iter_init_value); + r_uses_iter_var = true; } } -void FunctionInliner::visit(UnaryExpression &unary) +void ConstantFolder::visit(MemberAccess &memacc) { - visit_and_inline(unary.expression); - inline_result = 0; + TraversingVisitor::visit(memacc); + r_constant = false; } -void FunctionInliner::visit(BinaryExpression &binary) +void ConstantFolder::visit(Swizzle &swizzle) { - visit_and_inline(binary.left); - visit_and_inline(binary.right); - inline_result = 0; + TraversingVisitor::visit(swizzle); + r_constant = false; } -void FunctionInliner::visit(MemberAccess &memacc) +void ConstantFolder::visit(UnaryExpression &unary) { - visit_and_inline(memacc.left); - inline_result = 0; + TraversingVisitor::visit(unary); + bool can_fold = r_constant; + r_constant = false; + if(!can_fold) + return; + + char oper = unary.oper->token[0]; + char oper2 = unary.oper->token[1]; + if(oper=='!') + { + if(r_constant_value.check_type()) + set_result(!r_constant_value.value()); + } + else if(oper=='~') + { + if(r_constant_value.check_type()) + set_result(~r_constant_value.value()); + else if(r_constant_value.check_type()) + set_result(~r_constant_value.value()); + } + else if(oper=='-' && !oper2) + { + if(r_constant_value.check_type()) + set_result(-r_constant_value.value()); + else if(r_constant_value.check_type()) + set_result(-r_constant_value.value()); + else if(r_constant_value.check_type()) + set_result(-r_constant_value.value()); + } } -void FunctionInliner::visit(FunctionCall &call) +void ConstantFolder::visit(BinaryExpression &binary) { - for(NodeArray::iterator i=call.arguments.begin(); i!=call.arguments.end(); ++i) - visit_and_inline(*i); + visit(binary.left); + bool left_constant = r_constant; + bool left_iter_var = r_uses_iter_var; + Variant left_value = r_constant_value; + visit(binary.right); + if(left_iter_var) + r_uses_iter_var = true; + + bool can_fold = (left_constant && r_constant); + r_constant = false; + if(!can_fold) + return; + + // Currently only expressions with both sides of equal types are handled. + if(!left_value.check_same_type(r_constant_value)) + return; + + char oper = binary.oper->token[0]; + char oper2 = binary.oper->token[1]; + if(oper=='&' || oper=='|' || oper=='^') + { + if(oper2==oper && left_value.check_type()) + set_result(evaluate_logical(oper, left_value.value(), r_constant_value.value())); + else if(!oper2 && left_value.check_type()) + set_result(evaluate_logical(oper, left_value.value(), r_constant_value.value())); + else if(!oper2 && left_value.check_type()) + set_result(evaluate_logical(oper, left_value.value(), r_constant_value.value())); + } + else if((oper=='<' || oper=='>') && oper2!=oper) + { + if(left_value.check_type()) + set_result(evaluate_relation(binary.oper->token, left_value.value(), r_constant_value.value())); + else if(left_value.check_type()) + set_result(evaluate_relation(binary.oper->token, left_value.value(), r_constant_value.value())); + else if(left_value.check_type()) + set_result(evaluate_relation(binary.oper->token, left_value.value(), r_constant_value.value())); + } + else if((oper=='=' || oper=='!') && oper2=='=') + { + if(left_value.check_type()) + set_result((left_value.value()==r_constant_value.value()) == (oper=='=')); + else if(left_value.check_type()) + set_result((left_value.value()==r_constant_value.value()) == (oper=='=')); + else if(left_value.check_type()) + set_result((left_value.value()==r_constant_value.value()) == (oper=='=')); + } + else if(oper=='+' || oper=='-' || oper=='*' || oper=='/') + { + if(left_value.check_type()) + set_result(evaluate_arithmetic(oper, left_value.value(), r_constant_value.value())); + else if(left_value.check_type()) + set_result(evaluate_arithmetic(oper, left_value.value(), r_constant_value.value())); + else if(left_value.check_type()) + set_result(evaluate_arithmetic(oper, left_value.value(), r_constant_value.value())); + } + else if(oper=='%' || ((oper=='<' || oper=='>') && oper2==oper)) + { + if(left_value.check_type()) + set_result(evaluate_int_special_op(oper, left_value.value(), r_constant_value.value())); + else if(left_value.check_type()) + set_result(evaluate_int_special_op(oper, left_value.value(), r_constant_value.value())); + } +} - FunctionDeclaration *def = call.declaration; - if(def && def->definition!=def) - def = def->definition; +void ConstantFolder::visit(Assignment &assign) +{ + TraversingVisitor::visit(assign); + r_constant = false; +} - if(def && inlineable.count(def)) +void ConstantFolder::visit(TernaryExpression &ternary) +{ + TraversingVisitor::visit(ternary); + r_constant = false; +} + +void ConstantFolder::visit(FunctionCall &call) +{ + if(call.constructor && call.type && call.arguments.size()==1) { - extract_result = 2; - def->visit(*this); + const BasicTypeDeclaration *basic = dynamic_cast(call.type); + if(basic) + { + visit(call.arguments[0]); + bool can_fold = r_constant; + r_constant = false; + if(!can_fold) + return; + + if(basic->kind==BasicTypeDeclaration::BOOL) + convert_to_result(r_constant_value); + else if(basic->kind==BasicTypeDeclaration::INT && basic->size==32 && basic->sign) + convert_to_result(r_constant_value); + else if(basic->kind==BasicTypeDeclaration::INT && basic->size==32 && !basic->sign) + convert_to_result(r_constant_value); + else if(basic->kind==BasicTypeDeclaration::FLOAT && basic->size==32) + convert_to_result(r_constant_value); + + return; + } } - else - inline_result = 0; + + TraversingVisitor::visit(call); + r_constant = false; } -void FunctionInliner::visit(VariableDeclaration &var) +void ConstantFolder::visit(VariableDeclaration &var) { - if(var.init_expression) - visit_and_inline(var.init_expression); - inline_result = 0; + if(iteration_init && var.init_expression) + { + visit(var.init_expression); + if(r_constant) + { + /* Record the value of a constant initialization expression of an + iteration, so it can be used to evaluate the loop condition. */ + iteration_var = &var; + iter_init_value = r_constant_value; + } + } + else + TraversingVisitor::visit(var); } -void FunctionInliner::visit(Return &ret) +void ConstantFolder::visit(Iteration &iter) { - TraversingVisitor::visit(ret); + SetForScope set_block(current_block, &iter.body); - if(extract_result) - inline_result = ret.expression->clone(); -} + /* The iteration variable is not normally inlined into expressions, so we + process it specially here. If the initial value causes the loop condition + to evaluate to false, then the expression can be folded. */ + iteration_var = 0; + if(iter.init_statement) + { + SetFlag set_init(iteration_init); + iter.init_statement->visit(*this); + } + + if(iter.condition) + { + visit(iter.condition); + if(r_constant && r_constant_value.check_type() && !r_constant_value.value()) + { + RefPtr literal = new Literal; + literal->token = "false"; + literal->value = r_constant_value; + iter.condition = literal; + } + } + iteration_var = 0; + iter.body.visit(*this); + if(iter.loop_expression) + visit(iter.loop_expression); +} -ConstantConditionEliminator::ConstantConditionEliminator(): - record_only(false) -{ } -void ConstantConditionEliminator::apply(Stage &stage) +bool ConstantConditionEliminator::apply(Stage &stage) { stage.content.visit(*this); NodeRemover().apply(stage, nodes_to_remove); + return !nodes_to_remove.empty(); +} + +ConstantConditionEliminator::ConstantStatus ConstantConditionEliminator::check_constant_condition(const Expression &expr) +{ + if(const Literal *literal = dynamic_cast(&expr)) + if(literal->value.check_type()) + return (literal->value.value() ? CONSTANT_TRUE : CONSTANT_FALSE); + return NOT_CONSTANT; } void ConstantConditionEliminator::visit(Block &block) { SetForScope set_block(current_block, &block); - for(NodeList::iterator i=block.body.begin(); i!=block.body.end(); ++i) + for(auto i=block.body.begin(); i!=block.body.end(); ++i) { insert_point = i; (*i)->visit(*this); } +} - for(map::const_iterator i=block.variables.begin(); i!=block.variables.end(); ++i) - variable_values.erase(i->second); +void ConstantConditionEliminator::visit(RefPtr &expr) +{ + r_ternary_result = 0; + expr->visit(*this); + if(r_ternary_result) + expr = r_ternary_result; + r_ternary_result = 0; } void ConstantConditionEliminator::visit(UnaryExpression &unary) { - if(VariableReference *var = dynamic_cast(unary.expression.get())) - if(unary.oper=="++" || unary.oper=="--") - variable_values.erase(var->declaration); + if(unary.oper->token[1]=='+' || unary.oper->token[1]=='-') + if(const VariableReference *var = dynamic_cast(unary.expression.get())) + { + auto i = current_block->variables.find(var->name); + r_external_side_effects = (i==current_block->variables.end() || i->second!=var->declaration); + return; + } + + TraversingVisitor::visit(unary); } void ConstantConditionEliminator::visit(Assignment &assign) { - variable_values.erase(assign.target_declaration); + auto i = find_if(current_block->variables, [&assign](const pair &kvp){ return kvp.second==assign.target.declaration; }); + if(i==current_block->variables.end()) + r_external_side_effects = true; + TraversingVisitor::visit(assign); +} + +void ConstantConditionEliminator::visit(TernaryExpression &ternary) +{ + ConstantStatus result = check_constant_condition(*ternary.condition); + if(result!=NOT_CONSTANT) + r_ternary_result = (result==CONSTANT_TRUE ? ternary.true_expr : ternary.false_expr); + else + r_ternary_result = 0; } -void ConstantConditionEliminator::visit(VariableDeclaration &var) +void ConstantConditionEliminator::visit(FunctionCall &call) { - if((var.constant || current_block->parent) && var.init_expression) - variable_values[&var] = var.init_expression.get(); + r_external_side_effects = true; + TraversingVisitor::visit(call); } void ConstantConditionEliminator::visit(Conditional &cond) { - if(!record_only) + ConstantStatus result = check_constant_condition(*cond.condition); + if(result!=NOT_CONSTANT) { - ExpressionEvaluator eval(variable_values); - cond.condition->visit(eval); - if(eval.is_result_valid()) - { - Block &block = (eval.get_result() ? cond.body : cond.else_body); - current_block->body.splice(insert_point, block.body); - nodes_to_remove.insert(&cond); - return; - } + Block &block = (result==CONSTANT_TRUE ? cond.body : cond.else_body); + // TODO should check variable names for conflicts. Potentially reuse InlineContentInjector? + current_block->body.splice(insert_point, block.body); + nodes_to_remove.insert(&cond); + return; } + r_external_side_effects = false; TraversingVisitor::visit(cond); + + if(cond.body.body.empty() && cond.else_body.body.empty() && !r_external_side_effects) + nodes_to_remove.insert(&cond); } void ConstantConditionEliminator::visit(Iteration &iter) { - if(!record_only) + if(iter.condition) { - if(iter.condition) + ConstantStatus result = check_constant_condition(*iter.condition); + if(result==CONSTANT_FALSE) { - /* If the loop condition is always false on the first iteration, the - entire loop can be removed */ - if(iter.init_statement) - iter.init_statement->visit(*this); - ExpressionEvaluator eval(variable_values); - iter.condition->visit(eval); - if(eval.is_result_valid() && !eval.get_result()) - { - nodes_to_remove.insert(&iter); - return; - } + nodes_to_remove.insert(&iter); + return; } - - /* Record all assignments that occur inside the loop body so those - variables won't be considered as constant */ - SetFlag set_record(record_only); - TraversingVisitor::visit(iter); } + r_external_side_effects = false; TraversingVisitor::visit(iter); + if(iter.body.body.empty() && !r_external_side_effects) + nodes_to_remove.insert(&iter); +} + + +bool UnreachableCodeRemover::apply(Stage &stage) +{ + stage.content.visit(*this); + NodeRemover().apply(stage, unreachable_nodes); + return !unreachable_nodes.empty(); +} + +void UnreachableCodeRemover::visit(Block &block) +{ + auto i = block.body.begin(); + for(; (reachable && i!=block.body.end()); ++i) + (*i)->visit(*this); + for(; i!=block.body.end(); ++i) + unreachable_nodes.insert(i->get()); +} - if(VariableDeclaration *init_decl = dynamic_cast(iter.init_statement.get())) - variable_values.erase(init_decl); +void UnreachableCodeRemover::visit(FunctionDeclaration &func) +{ + TraversingVisitor::visit(func); + reachable = true; } +void UnreachableCodeRemover::visit(Conditional &cond) +{ + cond.body.visit(*this); + bool reachable_if_true = reachable; + reachable = true; + cond.else_body.visit(*this); + + reachable |= reachable_if_true; +} -UnusedVariableRemover::VariableInfo::VariableInfo(): - local(false), - conditionally_assigned(false), - referenced(false) -{ } +void UnreachableCodeRemover::visit(Iteration &iter) +{ + TraversingVisitor::visit(iter); + /* Always consider code after a loop reachable, since there's no checking + for whether the loop executes. */ + reachable = true; +} -UnusedVariableRemover::UnusedVariableRemover(): - aggregate(0), - assignment(0), - assignment_target(false), - assign_to_subscript(false) -{ } -bool UnusedVariableRemover::apply(Stage &stage) +bool UnusedTypeRemover::apply(Stage &stage) { - variables.push_back(BlockVariableMap()); stage.content.visit(*this); - BlockVariableMap &global_variables = variables.back(); - for(BlockVariableMap::iterator i=global_variables.begin(); i!=global_variables.end(); ++i) + NodeRemover().apply(stage, unused_nodes); + return !unused_nodes.empty(); +} + +void UnusedTypeRemover::visit(RefPtr &expr) +{ + unused_nodes.erase(expr->type); + TraversingVisitor::visit(expr); +} + +void UnusedTypeRemover::visit(BasicTypeDeclaration &type) +{ + if(type.base_type) + unused_nodes.erase(type.base_type); + unused_nodes.insert(&type); +} + +void UnusedTypeRemover::visit(ImageTypeDeclaration &type) +{ + if(type.base_type) + unused_nodes.erase(type.base_type); + if(type.base_image) + unused_nodes.erase(type.base_image); + unused_nodes.insert(&type); +} + +void UnusedTypeRemover::visit(StructDeclaration &strct) +{ + unused_nodes.insert(&strct); + TraversingVisitor::visit(strct); +} + +void UnusedTypeRemover::visit(VariableDeclaration &var) +{ + unused_nodes.erase(var.type_declaration); + TraversingVisitor::visit(var); +} + +void UnusedTypeRemover::visit(FunctionDeclaration &func) +{ + unused_nodes.erase(func.return_type_declaration); + TraversingVisitor::visit(func); +} + + +bool UnusedVariableRemover::apply(Stage &s) +{ + stage = &s; + s.content.visit(*this); + + for(const AssignmentInfo &a: assignments) + if(a.used_by.empty()) + unused_nodes.insert(a.node); + + for(const auto &kvp: variables) { - if(i->first->interface=="out" && (stage.type==Stage::FRAGMENT || i->first->linked_declaration || !i->first->name.compare(0, 3, "gl_"))) - continue; - if(!i->second.referenced) + if(!kvp.second.referenced) + unused_nodes.insert(kvp.first); + else if(kvp.second.output) { - unused_nodes.insert(i->first); - clear_assignments(i->second, true); + /* The last visible assignments of output variables are used by the + next stage or the API. */ + for(AssignmentInfo *a: kvp.second.assignments) + unused_nodes.erase(a->node); } } - variables.pop_back(); - NodeRemover().apply(stage, unused_nodes); + NodeRemover().apply(s, unused_nodes); return !unused_nodes.empty(); } -void UnusedVariableRemover::visit(VariableReference &var) +void UnusedVariableRemover::referenced(const Assignment::Target &target, Node &node) { - map::iterator i = aggregates.find(var.declaration); - if(i!=aggregates.end()) - unused_nodes.erase(i->second); - - if(var.declaration && !assignment_target) + VariableInfo &var_info = variables[target.declaration]; + var_info.referenced = true; + if(!assignment_target) { - VariableInfo &var_info = variables.back()[var.declaration]; - var_info.assignments.clear(); - var_info.referenced = true; + bool loop_external = false; + for(AssignmentInfo *a: var_info.assignments) + if(targets_overlap(a->target, target)) + { + a->used_by.push_back(&node); + if(a->in_looptoken[1]=='+' || unary.oper->token[1]=='-') + r_side_effects = true; } void UnusedVariableRemover::visit(BinaryExpression &binary) { - if(binary.oper=="[") + if(binary.oper->token[0]=='[') { - if(assignment_target) - assign_to_subscript = true; - binary.left->visit(*this); - SetForScope set(assignment_target, false); - binary.right->visit(*this); + visit_composite(*binary.left); + + { + SetFlag clear_assignment(assignment_target, false); + SetFlag clear_composite(composite_reference, false); + SetForScope clear_reference(r_reference, Assignment::Target()); + binary.right->visit(*this); + } + + add_to_chain(r_reference, Assignment::Target::ARRAY, 0x3F); + + if(!composite_reference && r_reference.declaration) + referenced(r_reference, binary); } else + { + SetFlag clear_composite(composite_reference, false); TraversingVisitor::visit(binary); + } +} + +void UnusedVariableRemover::visit(TernaryExpression &ternary) +{ + SetFlag clear_composite(composite_reference, false); + TraversingVisitor::visit(ternary); } void UnusedVariableRemover::visit(Assignment &assign) { { - assign_to_subscript = false; - SetForScope set(assignment_target, !assign.self_referencing); + SetFlag set(assignment_target, (assign.oper->token[0]=='=')); assign.left->visit(*this); } assign.right->visit(*this); - assignment = &assign; + r_assignment = &assign; + r_side_effects = true; } -void UnusedVariableRemover::record_assignment(VariableDeclaration &var, Node &node, bool chained) +void UnusedVariableRemover::visit(FunctionCall &call) { - VariableInfo &var_info = variables.back()[&var]; - if(!chained) - clear_assignments(var_info, true); - var_info.assignments.push_back(&node); - var_info.conditionally_assigned = false; + SetFlag clear_composite(composite_reference, false); + TraversingVisitor::visit(call); + /* Treat function calls as having side effects so expression statements + consisting of nothing but a function call won't be optimized away. */ + r_side_effects = true; + + if(stage->type==Stage::GEOMETRY && call.name=="EmitVertex") + { + for(const auto &kvp: variables) + if(kvp.second.output) + referenced(kvp.first, call); + } } -void UnusedVariableRemover::clear_assignments(VariableInfo &var_info, bool mark_unused) +void UnusedVariableRemover::record_assignment(const Assignment::Target &target, Node &node) { - if(mark_unused) + assignments.emplace_back(); + AssignmentInfo &assign_info = assignments.back(); + assign_info.node = &node; + assign_info.target = target; + assign_info.in_loop = in_loop; + + /* An assignment to the target hides any assignments to the same target or + its subfields. */ + VariableInfo &var_info = variables[target.declaration]; + for(unsigned i=0; i::iterator i=var_info.assignments.begin(); i!=var_info.assignments.end(); ++i) - unused_nodes.insert(*i); + const Assignment::Target &t = var_info.assignments[i]->target; + + bool subfield = (t.chain_len>=target.chain_len); + for(unsigned j=0; (subfield && jtarget_declaration) - record_assignment(*assignment->target_declaration, expr, (assignment->self_referencing || assign_to_subscript)); + if(r_assignment && r_assignment->target.declaration) + record_assignment(r_assignment->target, expr); + if(!r_side_effects) + unused_nodes.insert(&expr); } void UnusedVariableRemover::visit(StructDeclaration &strct) { - SetForScope set(aggregate, &strct); - unused_nodes.insert(&strct); + SetFlag set_struct(in_struct); TraversingVisitor::visit(strct); } void UnusedVariableRemover::visit(VariableDeclaration &var) { - if(aggregate) - aggregates[&var] = aggregate; - else - { - variables.back()[&var].local = true; - if(var.init_expression) - record_assignment(var, *var.init_expression, false); - } - unused_nodes.erase(var.type_declaration); TraversingVisitor::visit(var); -} -void UnusedVariableRemover::visit(InterfaceBlock &iface) -{ - SetForScope set(aggregate, &iface); - unused_nodes.insert(&iface); - TraversingVisitor::visit(iface); -} + if(in_struct) + return; -void UnusedVariableRemover::visit(FunctionDeclaration &func) -{ - variables.push_back(BlockVariableMap()); + VariableInfo &var_info = variables[&var]; - for(NodeArray::iterator i=func.parameters.begin(); i!=func.parameters.end(); ++i) - (*i)->visit(*this); - func.body.visit(*this); + /* Mark variables as output if they're used by the next stage or the + graphics API. */ + bool builtin = (!var.name.compare(0, 3, "gl_") || (var.block_declaration && !var.block_declaration->block_name.compare(0, 3, "gl_"))); + var_info.output = (var.interface=="out" && (stage->type==Stage::FRAGMENT || var.linked_declaration || builtin)); + + // Linked outputs are automatically referenced. + if(var_info.output && var.linked_declaration) + var_info.referenced = true; - BlockVariableMap &block_variables = variables.back(); - for(BlockVariableMap::iterator i=block_variables.begin(); i!=block_variables.end(); ++i) - i->second.conditionally_assigned = true; - for(NodeArray::iterator i=func.parameters.begin(); i!=func.parameters.end(); ++i) - block_variables[i->get()].referenced = true; - merge_down_variables(); + if(var.init_expression) + { + var_info.initialized = true; + record_assignment(&var, *var.init_expression); + } } -void UnusedVariableRemover::merge_down_variables() +void UnusedVariableRemover::merge_variables(const BlockVariableMap &other_vars) { - BlockVariableMap &parent_variables = variables[variables.size()-2]; - BlockVariableMap &block_variables = variables.back(); - for(BlockVariableMap::iterator i=block_variables.begin(); i!=block_variables.end(); ++i) + for(const auto &kvp: other_vars) { - if(i->second.local) + auto j = variables.find(kvp.first); + if(j!=variables.end()) { - if(!i->second.referenced) - unused_nodes.insert(i->first); - clear_assignments(i->second, i->first->interface!="out"); - continue; + /* The merged blocks started as copies of each other so any common + assignments must be in the beginning. */ + unsigned k = 0; + for(; (ksecond.assignments.size()); ++k) + if(kvp.second.assignments[k]!=j->second.assignments[k]) + break; + + // Remaining assignments are unique to each block; merge them. + j->second.assignments.insert(j->second.assignments.end(), kvp.second.assignments.begin()+k, kvp.second.assignments.end()); + j->second.referenced |= kvp.second.referenced; } - - BlockVariableMap::iterator j = parent_variables.find(i->first); - if(j==parent_variables.end()) - parent_variables.insert(*i); else - { - if(i->second.referenced || !i->second.conditionally_assigned) - clear_assignments(j->second, !i->second.referenced); - j->second.conditionally_assigned = i->second.conditionally_assigned; - j->second.referenced |= i->second.referenced; - j->second.assignments.insert(j->second.assignments.end(), i->second.assignments.begin(), i->second.assignments.end()); - } + variables.insert(kvp); } - variables.pop_back(); } -void UnusedVariableRemover::visit(Conditional &cond) +void UnusedVariableRemover::visit(FunctionDeclaration &func) { - cond.condition->visit(*this); - variables.push_back(BlockVariableMap()); - cond.body.visit(*this); + if(func.body.body.empty()) + return; - BlockVariableMap if_variables; - swap(variables.back(), if_variables); - cond.else_body.visit(*this); + BlockVariableMap saved_vars = variables; + // Assignments from other functions should not be visible. + for(auto &kvp: variables) + kvp.second.assignments.resize(kvp.second.initialized); + TraversingVisitor::visit(func); + swap(variables, saved_vars); + merge_variables(saved_vars); - BlockVariableMap &else_variables = variables.back(); - for(BlockVariableMap::iterator i=else_variables.begin(); i!=else_variables.end(); ++i) + /* Always treat function parameters as referenced. Removing unused + parameters is not currently supported. */ + for(const RefPtr &p: func.parameters) { - BlockVariableMap::iterator j = if_variables.find(i->first); - if(j!=if_variables.end()) - { - i->second.assignments.insert(i->second.assignments.end(), j->second.assignments.begin(), j->second.assignments.end()); - i->second.conditionally_assigned |= j->second.conditionally_assigned; - if_variables.erase(j); - } - else - i->second.conditionally_assigned = true; + auto j = variables.find(p.get()); + if(j!=variables.end()) + j->second.referenced = true; } +} - for(BlockVariableMap::iterator i=if_variables.begin(); i!=if_variables.end(); ++i) - { - i->second.conditionally_assigned = true; - else_variables.insert(*i); - } +void UnusedVariableRemover::visit(Conditional &cond) +{ + cond.condition->visit(*this); + BlockVariableMap saved_vars = variables; + cond.body.visit(*this); + swap(saved_vars, variables); + cond.else_body.visit(*this); - merge_down_variables(); + /* Visible assignments after the conditional is the union of those visible + at the end of the if and else blocks. If there was no else block, then it's + the union of the if block and the state before it. */ + merge_variables(saved_vars); } void UnusedVariableRemover::visit(Iteration &iter) { - variables.push_back(BlockVariableMap()); - TraversingVisitor::visit(iter); + BlockVariableMap saved_vars = variables; + vector saved_refs; + swap(loop_ext_refs, saved_refs); + { + if(iter.init_statement) + iter.init_statement->visit(*this); + SetForScope set_loop(in_loop, in_loop+1); + if(iter.condition) + iter.condition->visit(*this); + iter.body.visit(*this); + if(iter.loop_expression) + iter.loop_expression->visit(*this); + } + swap(loop_ext_refs, saved_refs); - BlockVariableMap &block_variables = variables.back(); - for(BlockVariableMap::iterator i=block_variables.begin(); i!=block_variables.end(); ++i) - if(!i->second.local && i->second.referenced) - i->second.assignments.clear(); + /* Visit the external references of the loop again to record assignments + done in the loop as used. */ + for(Node *n: saved_refs) + n->visit(*this); - merge_down_variables(); + /* Merge assignments from the iteration, without clearing previous state. + Further analysis is needed to determine which parts of the iteration body + are always executed, if any. */ + merge_variables(saved_vars); }