X-Git-Url: http://git.tdb.fi/?p=libs%2Fgl.git;a=blobdiff_plain;f=blender%2Fio_mspgl%2Fmesh.py;h=91648d28e5b28b1ab6db369586b46d974b0c332e;hp=2cd64236b18a7cec73d54f20034d26c8a52533c7;hb=HEAD;hpb=eeaa1dcf7e383517e8097c9438a286e3810962ae diff --git a/blender/io_mspgl/mesh.py b/blender/io_mspgl/mesh.py index 2cd64236..e4db4afb 100644 --- a/blender/io_mspgl/mesh.py +++ b/blender/io_mspgl/mesh.py @@ -1,23 +1,24 @@ import math import mathutils +import itertools def make_edge_key(i1, i2): return (min(i1, i2), max(i1, i2)) class Edge: - def __init__(self, me): - if me.__class__==Edge: - self._medge = me._medge - self.vertices = me.vertices[:] - self.smooth = me.smooth + def __init__(self, edge): + if edge.__class__==Edge: + self.smooth = edge.smooth else: - self._medge = me self.smooth = False + if edge: + self.vertices = edge.vertices[:] + self.key = edge.key + else: + self.vertices = [] + self.key = None self.faces = [] - def __getattr__(self, attr): - return getattr(self._medge, attr) - def check_smooth(self, limit): if len(self.faces)!=2: return @@ -42,28 +43,21 @@ class Edge: class Vertex: - def __init__(self, mv): - if mv.__class__==Vertex: - self._mvert = mv._mvert - self.co = mv.co - self.normal = mv.normal - self.uvs = mv.uvs[:] - self.tan = mv.tan - self.bino = mv.bino - self.group_weight_scale = mv.group_weight_scale + def __init__(self, vertex): + if vertex.__class__==Vertex: + self.uvs = vertex.uvs[:] + self.tan = vertex.tan else: - self._mvert = mv - self.co = mv.co - self.normal = mv.normal self.uvs = [] self.tan = None - self.bino = None - self.group_weight_scale = 1 + self.index = vertex.index + self.co = mathutils.Vector(vertex.co) + self.normal = mathutils.Vector(vertex.normal) + self.color = None self.flag = False + self.edges = [] self.faces = [] - - def __getattr__(self, attr): - return getattr(self._mvert, attr) + self.groups = vertex.groups[:] def __cmp__(self, other): if other is None: @@ -71,36 +65,63 @@ class Vertex: return cmp(self.index, other.index) +class VertexGroup: + def __init__(self, *args): + if len(args)==2: + self.group = args[0] + self.weight = args[1] + elif len(args)==1 and args[0]: + self.group = group.group + self.weight = group.weight + else: + self.group = 0 + self.weight = 0.0 + + +class Batch: + def __init__(self, pt): + self.primitive_type = pt + self.patch_size = 0 + self.vertices = [] + + class Face: - def __init__(self, mf): - self._mface = mf + def __init__(self, face): + self.index = face.index self.edges = [] - self.vertices = mf.vertices[:] - self.uvs = [] + self.edge_keys = face.edge_keys + self.vertices = face.vertices[:] + self.loop_indices = face.loop_indices + self.normal = face.normal + self.use_smooth = face.use_smooth + self.material_index = face.material_index + self.splat_mask = 0 self.flag = False - def __getattr__(self, attr): - return getattr(self._mface, attr) - def __cmp__(self, other): if other is None: return 1 return cmp(self.index, other.index) - def pivot_vertices(self, *vt): - flags = [(v in vt) for v in self.vertices] - l = len(self.vertices) - for i in range(l): - if flags[i] and not flags[(i+l-1)%l]: - return self.vertices[i:]+self.vertices[:i] + def pivot_vertex(self, v): + n = self.vertices.index(v) + return [(n+i)%len(self.vertices) for i in range(len(self.vertices))] + + def get_loop_index(self, v): + return self.loop_indices[self.vertices.index(v)] - def get_edge(self, v1, v2): + def get_edge(self, v1, v2): key = make_edge_key(v1.index, v2.index) for e in self.edges: if e.key==key: return e raise KeyError("No edge %s"%(key,)) + def other_edge(self, e, v): + for d in self.edges: + if d!=e and v in d.vertices: + return d + def get_neighbors(self): neighbors = [e.other_face(self) for e in self.edges] return list(filter(bool, neighbors)) @@ -114,12 +135,17 @@ class Line: class UvLayer: - def __init__(self, l, t): - self._layer = l - self.uvtex = t - self.name = self.uvtex.name + def __init__(self, arg): + if type(arg)==str: + self.name = arg + self.uvs = [] + else: + self.name = arg.name + self.uvs = [mathutils.Vector(d.uv) for d in arg.data] + self.unit = None self.hidden = False + dot = self.name.find('.') if dot>=0: ext = self.name[dot:] @@ -128,320 +154,837 @@ class UvLayer: elif ext==".hidden": self.hidden = True - def __getattr__(self, attr): - return getattr(self._layer, attr) -class FakeUvLayer: - def __init__(self, n): - self.uvtex = None - self.name = n - self.unit = None - self.hidden = False +class ColorLayer: + def __init__(self, l): + self.name = l.name + self.colors = [c.color[:] for c in l.data] -class Mesh: - def __init__(self, m): - self._mesh = m - - self.vertices = [Vertex(v) for v in self.vertices] - self.faces = [Face(f) for f in self.polygons] - - self.materials = self.materials[:] - - self.uv_layers = [UvLayer(self.uv_layers[i], self.uv_textures[i]) for i in range(len(self.uv_layers))] - self.assign_texture_units() +class Mesh: + def __init__(self, mesh): + self.name = mesh.name + + self.smoothing = mesh.smoothing + self.use_uv = mesh.use_uv + self.tangent_uvtex = mesh.tangent_uvtex + self.use_strips = mesh.use_strips + self.use_patches = mesh.use_patches + self.use_lines = mesh.use_lines + self.vertex_groups = mesh.vertex_groups + + # Clone basic data + self.vertices = [Vertex(v) for v in mesh.vertices] + if self.vertex_groups: + for v in self.vertices: + v.groups = [VertexGroup(g) for g in v.groups] + + self.faces = [Face(f) for f in mesh.polygons] + self.edges = [Edge(e) for e in mesh.edges] + self.loops = mesh.loops[:] + self.materials = mesh.materials[:] + + self.use_auto_smooth = mesh.use_auto_smooth + self.auto_smooth_angle = mesh.auto_smooth_angle + self.max_groups_per_vertex = mesh.max_groups_per_vertex + + # Check some material properties + from .material import Material + has_normal_maps = False + splat_material = None + for m in self.materials: + mat = Material(m) + for p in itertools.chain(mat.properties, *(s.properties for s in mat.sub_materials)): + if p.tex_keyword=="normal_map" and p.texture: + has_normal_maps = True + break + if mat.type=="splat": + splat_material = mat + + # Clone only the desired UV layers + if mesh.use_uv=='NONE' or not mesh.uv_layers: + self.uv_layers = [] + else: + self.uv_layers = [UvLayer(u) for u in mesh.uv_layers if u.data] + + # Assign texture unit numbers to UV layers that lack one + missing_unit = [u for u in self.uv_layers if u.unit is None] + if missing_unit: + missing_unit = sorted(missing_unit, key=(lambda u: u.name)) + used_units = [u.unit for u in self.uv_layers if u.unit is not None] + for u, n in zip(missing_unit, (i for i in itertools.count() if i not in used_units)): + u.unit = n + + self.uv_layers = sorted(self.uv_layers, key=(lambda u: u.unit)) + + if mesh.use_uv=='UNIT0' and self.uv_layers: + self.uv_layers = [self.uv_layers[0]] + if self.uv_layers[0].unit!=0: + self.uv_layers = [] + + self.colors = None + if mesh.vertex_colors and not splat_material: + self.colors = ColorLayer(mesh.vertex_colors[0]) + + # Rewrite links between elements to point to cloned data, or create links + # where they don't exist + edge_map = {e.key: e for e in self.edges} for f in self.faces: - if len(f.vertices)>4: - raise ValueError("Ngons are not supported") + if len(f.vertices)>4 and not mesh.use.patches: + raise ValueError("Unsupported face on mesh {}: N-gon".format(self.name)) + f.vertices = [self.vertices[i] for i in f.vertices] for v in f.vertices: v.faces.append(f) - for u in self.uv_layers: - f.uvs.append([u.data[f.loop_indices[i]].uv for i in range(len(f.vertices))]) - self.edges = dict([(e.key, Edge(e)) for e in self.edges]) - for f in self.faces: for k in f.edge_keys: - e = self.edges[k] - e.faces.append(self.faces[f.index]) + e = edge_map[k] + e.faces.append(f) f.edges.append(e) - self.lines = [Line(e) for e in self.edges.values() if not e.faces] - for l in self.lines: - l.vertices = [self.vertices[i] for i in l.vertices] + for e in self.edges: + e.vertices = [self.vertices[i] for i in e.vertices] + for v in e.vertices: + v.edges.append(e) - if self.use_auto_smooth: - smooth_limit = math.cos(self.auto_smooth_angle) + # Store loose edges as lines + if mesh.use_lines and not mesh.use_patches: + self.lines = [Line(e) for e in self.edges if not e.faces] else: - smooth_limit = -1 + self.lines = [] + + # Check if tangent vectors are needed + if mesh.tangent_vecs=='NO': + self.tangent_vecs = False + elif mesh.tangent_vecs=='YES': + self.tangent_vecs = True + elif mesh.tangent_vecs=='AUTO': + self.tangent_vecs = has_normal_maps + + # Collect splat weight sources if needed + self.splat_layers = [] + self.splat_sources = [] + if splat_material: + names = {s.weight_source[0] for s in splat_material.sub_materials} + self.splat_layers = [ColorLayer(l) for l in mesh.vertex_colors if l.name in names] + + layers_by_name = {l.name:l for l in self.splat_layers} + for s in splat_material.sub_materials: + if s.weight_source[0] is None: + self.splat_sources.append((None, None)) + else: + self.splat_sources.append((layers_by_name[s.weight_source[0]], "RGBA".index(s.weight_source[1]))) - for e in self.edges.values(): - e.vertices = [self.vertices[i] for i in e.vertices] - e.check_smooth(smooth_limit) + self.vertex_groups = True + self.max_groups_per_vertex = 3 - def __getattr__(self, attr): - return getattr(self._mesh, attr) + self.batches = [] def transform(self, matrix): for v in self.vertices: - v.co = matrix*v.co + v.co = matrix@v.co def splice(self, other): - material_map = [] + if len(self.uv_layers)!=len(other.uv_layers): + raise ValueError("Meshes {} and {} have incompatible UV layers".format(self.name, other.name)) + for i, u in enumerate(self.uv_layers): + if u.name!=other.uv_layers[i].name: + raise ValueError("Meshes {} and {} have incompatible UV layers".format(self.name, other.name)) + + # Merge materials and form a lookup from source material indices to the + # merged material list + material_lookup = [] for m in other.materials: if m in self.materials: - material_map.append(self.materials.index(m)) + material_lookup.append(self.materials.index(m)) else: - material_map.append(len(self.materials)) + material_lookup.append(len(self.materials)) self.materials.append(m) + # Append data and adjust indices where necessary. Since the data is + # spliced from the source mesh, rebuilding references is not necessary. + for i, u in enumerate(self.uv_layers): + u.uvs += other.uv_layers[i].uvs + + if self.colors: + if other.colors: + self.colors.colors += other.colors.colors + else: + self.colors.colors += [(1.0, 1.0, 1.0, 1.0)]*len(other.loops) + elif other.colors: + self.colors = ColorLayer(other.colors.name) + self.colors.colors = [(1.0, 1.0, 1.0, 1.0)]*len(self.loops)+other.colors.colors + offset = len(self.vertices) - for v in other.vertices: + self.vertices += other.vertices + for v in self.vertices[offset:]: v.index += offset - self.vertices.append(v) + + loop_offset = len(self.loops) + self.loops += other.loops offset = len(self.faces) - for f in other.faces: + self.faces += other.faces + for f in self.faces[offset:]: f.index += offset + f.loop_indices = range(f.loop_indices.start+offset, f.loop_indices.stop+offset) if other.materials: - f.material_index = material_map[f.material_index] - self.faces.append(f) + f.material_index = material_lookup[f.material_index] - for e in other.edges.values(): + offset = len(self.edges) + self.edges += other.edges + for e in self.edges[offset:]: + e.index += offset e.key = make_edge_key(e.vertices[0].index, e.vertices[1].index) - self.edges[e.key] = e self.lines += other.lines - def flatten_faces(self): - for f in self.faces: - f.use_smooth = False + def prepare_triangles(self, task): + if self.use_patches: + return - for e in self.edges.values(): - e.check_smooth(1) + face_count = len(self.faces) + for i in range(face_count): + f = self.faces[i] + nverts = len(f.vertices) + if nverts==3: + continue + + # Calculate normals at each vertex of the face + edge_vecs = [] + for j in range(nverts): + edge_vecs.append(f.vertices[(j+1)%nverts].co-f.vertices[j].co) + + normals = [] + for j in range(nverts): + normals.append(edge_vecs[j-1].cross(edge_vecs[j]).normalized()) + + # Check which diagonal results in a flatter triangulation + flatness1 = normals[0].dot(normals[2]) + flatness2 = normals[1].dot(normals[3]) + cut_index = 1 if flatness1>flatness2 else 0 + + nf = Face(f) + nf.index = len(self.faces) + self.faces.append(nf) + + ne = Edge(None) + ne.index = len(self.edges) + self.edges.append(ne) + + nf.vertices = [f.vertices[cut_index], f.vertices[2], f.vertices[3]] + nf.loop_indices = [f.loop_indices[cut_index], f.loop_indices[2], f.loop_indices[3]] + for v in nf.vertices: + v.faces.append(nf) + + ne.vertices = [f.vertices[cut_index], f.vertices[2+cut_index]] + for v in ne.vertices: + v.edges.append(ne) + ne.key = make_edge_key(ne.vertices[0].index, ne.vertices[1].index) + ne.smooth = True + + f.vertices[3-cut_index].faces.remove(f) + del f.vertices[3-cut_index] + f.loop_indices = [f.loop_indices[0], f.loop_indices[1], f.loop_indices[2+cut_index]] + + ne.faces = [f, nf] + if cut_index==0: + nf.edges = [ne, f.edges[2], f.edges[3]] + f.edges = [f.edges[0], f.edges[1], ne] + else: + nf.edges = [f.edges[1], f.edges[2], ne] + f.edges = [f.edges[0], ne, f.edges[3]] + for e in nf.edges: + if e!=ne: + e.faces.remove(f) + e.faces.append(nf) + + f.normal = normals[1-cut_index] + nf.normal = normals[3-cut_index] + + task.set_progress(i/face_count) + + def prepare_smoothing(self, task): + smooth_limit = -1 + if self.smoothing=='NONE': + for f in self.faces: + f.use_smooth = False + + smooth_limit = 1 + elif self.use_auto_smooth: + smooth_limit = math.cos(self.auto_smooth_angle) + + for e in self.edges: + e.check_smooth(smooth_limit) + + subtask = task.task("Sharp edges", 0.7) + self.split_vertices(self.find_smooth_group, subtask) + + if self.smoothing!='BLENDER': + subtask = task.task("Updating normals", 1.0) + self.compute_normals(subtask) + + def prepare_vertex_groups(self, obj): + if not self.vertex_groups: + return + + for v in self.vertices: + if v.groups: + weight_sum = sum(g.weight for g in v.groups) + v.groups = sorted(v.groups, key=(lambda g: g.weight), reverse=True)[:self.max_groups_per_vertex] + weight_scale = weight_sum/sum(g.weight for g in v.groups) + for g in v.groups: + g.weight *= weight_scale + while len(v.groups)=0: + prog_count += 1 + task.set_slices(prog_count) + + if tangent_layer_index>=0: + subtask = task.next_slice("Computing tangents") + self.split_vertices(self.find_uv_group, subtask, tangent_layer_index) + subtask = task.next_slice(self.tangent_uvtex) + self.compute_tangents(tangent_layer_index, subtask) + + # Split by the remaining UV layers + for i, u in enumerate(self.uv_layers): + if i==tangent_layer_index: + continue + + subtask = task.next_slice(u.name) + self.split_vertices(self.find_uv_group, subtask, i) + + # Copy UVs from layers to vertices + for v in self.vertices: + if v.faces: + # All faces still connected to the vertex have the same UV value + f = v.faces[0] + i = f.get_loop_index(v) + v.uvs = [u.uvs[i] for u in self.uv_layers] + else: + v.uvs = [(0.0, 0.0)]*len(self.uv_layers) + + def prepare_colors(self, task): + if not self.colors: + return + + self.split_vertices(self.find_color_group, task) + + for v in self.vertices: + if v.faces: + f = v.faces[0] + v.color = self.colors.colors[f.get_loop_index(v)] + else: + v.color = (1.0, 1.0, 1.0, 1.0) + + def prepare_splat_weights(self, task): + if not self.splat_layers: + return + + splat_weights = [] + remainder = None + for s in self.splat_sources: + if s[0] is None: + splat_weights.append(remainder) + else: + index = s[1] + layer_values = [c[index] for c in s[0].colors] + if remainder: + splat_weights.append([v*r for v, r in zip(layer_values, remainder)]) + remainder = [(1-v)*r for v, r in zip(layer_values, remainder)] + else: + splat_weights.append(layer_values) + remainder = [1-v for v in layer_values] + + splat_weights = list(zip(*splat_weights)) - def assign_texture_units(self): - # Assign texture units for any non-hidden UV layers that lack one - units = [u.unit for u in self.uv_layers if u.unit is not None] - if units: - free_unit = max(units)+1 - else: - free_unit = 0 - for u in self.uv_layers: - if u.unit is None: - if not u.hidden: - u.unit = free_unit - free_unit += 1 - - def generate_material_uv(self): - self.uv_layers.append(FakeUvLayer("material_tex")) - self.assign_texture_units() for f in self.faces: - f.uvs.append([((f.material_index+0.5)/len(self.materials), 0.5)]*len(f.vertices)) + for i in f.loop_indices: + f.splat_mask |= sum(1<0) + + self.split_vertices(self.find_splat_group, task) - def split_vertices(self, find_group_func, progress, *args): - groups = [] - for i in range(len(self.vertices)): + for v in self.vertices: + if v.faces: + f = v.faces[0] + weights = splat_weights[f.get_loop_index(v)] + v.groups = [VertexGroup(i, w) for i, w in enumerate(weights) if (f.splat_mask>>i)&1] + else: + v.groups = [] + while len(v.groups)best_score: + best_score = score + face = f + + if not face: + break + + reordered_faces.append(face) face.flag = True - vertices = face.pivot_vertices(*result[-2:]) - k = len(result)%2 + for v in face.vertices: + vertex_info[v.index][1] -= 1 + + # Shuffle the vertex into the front of the cache + if v in cached_vertices: + cached_vertices.remove(v) + cached_vertices.insert(0, v) + + # Update scores for all vertices in the cache + for i, v in enumerate(cached_vertices): + score = 0 + if i<3: + score += last_triangle_score + elif ibest_score: + best_score = score + face = f - # Quads need special handling because the winding of every other - # triangle in the strip is reversed - if len(vertices)==4 and not k: - result.append(vertices[3]) - result.append(vertices[2]) - if len(vertices)==4 and k: - result.append(vertices[3]) + del cached_vertices[max_cache_size:] - if len(result)>=max_len: - break + n_processed += 1 + task.set_progress(n_processed/len(self.faces)) + + self.faces = reordered_faces + for i, f in enumerate(self.faces): + f.index = i + + def reorder_patches(self, task): + for f in self.faces: + f.flag = False + + reordered_faces = [] + n_processed = 0 + + while 1: + current_size = 0 + + for f in self.faces: + if f.flag: + continue + + if not current_size: + current_size = len(f.vertices) + elif len(f.vertices)!=current_size: + continue - # Hop over the last edge - edge = face.get_edge(*result[-2:]) - face = edge.other_face(face) - if not face or face.flag: + reordered_faces.append(f) + f.flag = True + + n_processed += 1 + task.set_progress(n_processed/len(self.faces)) + + if not current_size: break - return result + def reorder_vertices(self): + for v in self.vertices: + v.index = -1 + + reordered_vertices = [] + for b in self.batches: + for v in b.vertices: + if v.index<0: + v.index = len(reordered_vertices) + reordered_vertices.append(v) + + for v in self.vertices: + if v.index<0: + v.index = len(reordered_vertices) + reordered_vertices.append(v) + + self.vertices = reordered_vertices + + for e in self.edges: + e.key = make_edge_key(e.vertices[0].index, e.vertices[1].index) + + +def create_mesh_from_object(ctx, obj): + if obj.type!="MESH": + raise Exception("Object {} is not a mesh".format(obj.name)) + + task = ctx.task("Collecting mesh data", 0.2) + + objs = [(obj, mathutils.Matrix())] + i = 0 + while i