struct AtmosphericEvents { vec3 rayleigh_scatter; vec3 mie_scatter; vec3 mie_absorb; vec3 ozone_absorb; }; uniform Atmosphere { AtmosphericEvents events; float rayleigh_density_decay; float mie_density_decay; float ozone_band_center; float ozone_band_extent; float planet_radius; float atmosphere_thickness; vec3 ground_albedo; int n_steps; }; uniform View { float view_height; vec4 light_color; vec3 light_dir; }; struct OpticalPathInfo { vec3 optical_depth; vec3 luminance; }; const float mie_asymmetry = 0.8; uniform sampler2D transmittance_lookup; vec3 rayleigh_density(vec3 base, float height) { return base*exp(height/rayleigh_density_decay); } float rayleigh_phase(float cos_theta) { return 3.0*(1.0+cos_theta*cos_theta)/(16.0*PI); } vec3 mie_density(vec3 base, float height) { return base*exp(height/mie_density_decay); } float mie_phase(float cos_theta) { float g = mie_asymmetry; float num = (1.0-g*g)*(1.0+cos_theta*cos_theta); float denom = (2.0+g*g)*pow(1.0+g*g-2.0*g*cos_theta, 1.5); return 3.0/(8.0*PI)*num/denom; } vec3 ozone_density(vec3 base, float height) { return base*max(1.0-abs(height-ozone_band_center)/ozone_band_extent, 0.0); } AtmosphericEvents calculate_events(float height) { AtmosphericEvents ev; ev.rayleigh_scatter = rayleigh_density(events.rayleigh_scatter, height); ev.mie_scatter = mie_density(events.mie_scatter, height); ev.mie_absorb = mie_density(events.mie_absorb, height); ev.ozone_absorb = ozone_density(events.ozone_absorb, height); return ev; } vec3 total_extinction(AtmosphericEvents ev) { return ev.rayleigh_scatter+ev.mie_scatter+ev.mie_absorb+ev.ozone_absorb; } float ray_sphere_intersect(vec3 ray_start, vec3 ray_dir, vec3 sphere_center, float sphere_radius) { float t = dot(sphere_center-ray_start, ray_dir); vec3 nearest = ray_start+t*ray_dir-sphere_center; float d_sq = dot(nearest, nearest); float r_sq = sphere_radius*sphere_radius; if(d_sq>r_sq) return -1.0; float offset = sqrt(r_sq-d_sq); if(offset-t) return t+offset; else return -1.0; } #pragma MSP stage(fragment) OpticalPathInfo raymarch_path(float start_height, vec3 look_dir) { float cos_theta = dot(look_dir, light_dir); float p_rayleigh = rayleigh_phase(cos_theta); float p_mie = mie_phase(cos_theta); vec3 planet_center = vec3(0.0, 0.0, -planet_radius); vec3 pos = vec3(0.0, 0.0, start_height); vec3 path_luminance = vec3(0.0); vec3 path_extinction = vec3(0.0); float ground_t = ray_sphere_intersect(pos, look_dir, planet_center, planet_radius); float space_t = ray_sphere_intersect(pos, look_dir, planet_center, planet_radius+atmosphere_thickness); float ray_length = (ground_t>0.0 ? ground_t : space_t); float step_size = ray_length/n_steps; for(int i=0; i<=n_steps; ++i) { vec3 from_center = pos-planet_center; float height = length(from_center); float light_z = dot(from_center/height, light_dir); height -= planet_radius; AtmosphericEvents ev = calculate_events(height); vec3 transmittance = exp(-path_extinction); vec3 in_transmittance = texture(transmittance_lookup, vec2(sqrt(height/atmosphere_thickness), light_z)).rgb; vec3 in_luminance = (ev.rayleigh_scatter*p_rayleigh+ev.mie_scatter*p_mie)*step_size; if(i==n_steps && ground_t>0.0) in_luminance += ground_albedo*light_z/PI; path_luminance += transmittance*in_transmittance*in_luminance; path_extinction += total_extinction(ev)*step_size; pos += look_dir*step_size; } return OpticalPathInfo(path_extinction, path_luminance); }