From: Mikko Rasa Date: Sun, 2 Jun 2019 16:13:14 +0000 (+0300) Subject: Add an interpolation sub-library X-Git-Url: http://git.tdb.fi/?a=commitdiff_plain;h=4b895388d12b160f486c8b49b3296b15eeed7cc2;p=libs%2Fmath.git Add an interpolation sub-library Initially including polynomials and splines, with cubic Hermite splines being the only implemented spline type. --- diff --git a/Build b/Build index 20875c4..ff363a4 100644 --- a/Build +++ b/Build @@ -4,6 +4,7 @@ package "mspmath" library "mspmath" { + source "source/interpolate"; source "source/linal"; source "source/geometry"; install true; diff --git a/source/interpolate/dummy.cpp b/source/interpolate/dummy.cpp new file mode 100644 index 0000000..ec10aec --- /dev/null +++ b/source/interpolate/dummy.cpp @@ -0,0 +1,3 @@ +#include "hermitespline.h" +#include "polynomial.h" +#include "spline.h" diff --git a/source/interpolate/hermitespline.h b/source/interpolate/hermitespline.h new file mode 100644 index 0000000..057a9c4 --- /dev/null +++ b/source/interpolate/hermitespline.h @@ -0,0 +1,109 @@ +#ifndef MSP_INTERPOLATE_HERMITESPLINE_H_ +#define MSP_INTERPOLATE_HERMITESPLINE_H_ + +#include "spline.h" + +namespace Msp { +namespace Interpolate { + +template +struct Hermite +{ + static const Polynomial &h00(); + static const Polynomial &h10(); + static const Polynomial &h01(); + static const Polynomial &h11(); + static Polynomial make(T, T, T, T); +}; + +/** +Implements a cubic Hermite spline. It is parametrized by the value and slope +at each knot. The first derivative is guaranteed to be continuous, making it +particularly useful as an interpolator. +*/ +template +class HermiteSpline: public Spline +{ +public: + using typename Spline::Value; + + struct Knot: Spline::Knot + { + Value dy; + + Knot(T x_, Value y_, Value d): Spline::Knot(x_, y_), dy(d) { } + }; + + HermiteSpline(const std::vector &); + HermiteSpline(Value, Value, Value, Value); +}; + +template +inline const Polynomial &Hermite::h00() +{ + static Polynomial p(LinAl::Vector(2, -3, 0, 1)); + return p; +} + +template +inline const Polynomial &Hermite::h10() +{ + static Polynomial p(LinAl::Vector(1, -2, 1, 0)); + return p; +} + +template +inline const Polynomial &Hermite::h01() +{ + static Polynomial p(LinAl::Vector(-2, 3, 0, 0)); + return p; +} + +template +inline const Polynomial &Hermite::h11() +{ + static Polynomial p(LinAl::Vector(1, -1, 0, 0)); + return p; +} + +template +inline Polynomial Hermite::make(T p0, T m0, T p1, T m1) +{ + return h00()*p0 + h10()*m0 + h01()*p1 + h11()*m1; +} + + +template +inline HermiteSpline::HermiteSpline(const std::vector &k): + Spline(k.front()) +{ + typedef SplineValue SV; + + this->reserve(k.size()-1); + for(unsigned i=1; i t(LinAl::Vector(T(1)/dx, -k[i-1].x/dx)); + Polynomial p[N]; + for(unsigned j=0; j::make(SV::get(k[i-1].y, j), SV::get(k[i-1].dy, j)*dx, SV::get(k[i].y, j), SV::get(k[i].dy, j)*dx)(t); + this->add_segment(p, k[i].x); + } +} + +template +inline HermiteSpline::HermiteSpline(Value p0, Value m0, Value p1, Value m1): + Spline(Knot(0, p0, m0)) +{ + typedef SplineValue SV; + + this->reserve(1); + Polynomial p[N]; + for(unsigned i=0; i::make(SV::get(p0, i), SV::get(m0, i), SV::get(p1, i), SV::get(m1, i)); + this->add_segment(p, T(1)); +} +} // namespace Interpolate +} // namespace Msp + +#endif diff --git a/source/interpolate/polynomial.h b/source/interpolate/polynomial.h new file mode 100644 index 0000000..859eea8 --- /dev/null +++ b/source/interpolate/polynomial.h @@ -0,0 +1,168 @@ +#ifndef MSP_INTERPOLATE_POLYNOMIAL_H_ +#define MSP_INTERPOLATE_POLYNOMIAL_H_ + +#include +#include + +namespace Msp { +namespace Interpolate { + +/** +Represents a polynomial of degree D with a single variable. The coefficients +are stored as a vector with the highest degree term first. +*/ +template +class Polynomial +{ +private: + LinAl::Vector coeff; + +public: + Polynomial() { } + Polynomial(const LinAl::Vector &c): coeff(c) { } + template + Polynomial(const Polynomial &); + + unsigned degree() const { return D; } + + LinAl::Vector coefficients() { return coeff; } + const LinAl::Vector coefficients() const { return coeff; } + T &coefficient(unsigned i) { return coeff[i]; } + const T &coefficient(unsigned i) const { return coeff[i]; } + + Polynomial &operator+=(const Polynomial &); + Polynomial &operator-=(const Polynomial &); + Polynomial &operator*=(T); + Polynomial &operator/=(T); + + /// Calculates the value of the polynomial at a particular point. + T operator()(T) const; + + /** Substitutes the variable of the polynomial with another polynomial. The + result is a new polynomial. */ + template + Polynomial operator()(const Polynomial &) const; +}; + +template +template +inline Polynomial::Polynomial(const Polynomial &other) +{ + char source_cannot_be_larger[D>=G ? 1 : -1]; + for(unsigned i=0; i<=G; ++i) + coeff[D-i] = other.coefficient(G-i); +} + +template +inline Polynomial &Polynomial::operator+=(const Polynomial &p) +{ + coeff += p.coeff; + return *this; +} + +template +inline Polynomial operator+(const Polynomial &p, const Polynomial &q) +{ + Polynomial r(p); + return r += q; +} + +template +inline Polynomial &Polynomial::operator-=(const Polynomial &p) +{ + coeff -= p.coeff; + return *this; +} + +template +inline Polynomial operator-(const Polynomial &p, const Polynomial &q) +{ + Polynomial r(p); + return r -= q; +} + +template +inline Polynomial &Polynomial::operator*=(T s) +{ + coeff *= s; + return *this; +} + +template +inline Polynomial operator*(const Polynomial &p, T s) +{ + Polynomial r(p); + return r *= s; +} + +template +inline Polynomial operator*(T s, const Polynomial &p) +{ + return p*s; +} + +template +inline Polynomial operator*(const Polynomial &p, const Polynomial &q) +{ + LinAl::Vector coeff; + for(unsigned i=0; i<=D; ++i) + for(unsigned j=0; j<=G; ++j) + coeff[i+j] += p.coefficient(i)*q.coefficient(j); + return Polynomial(coeff); +} + +template +inline Polynomial &Polynomial::operator/=(T s) +{ + coeff /= s; + return *this; +} + +template +inline Polynomial operator/(const Polynomial &p, T s) +{ + Polynomial r(p); + return r /= s; +} + +template +inline T Polynomial::operator()(T x) const +{ + T r = T(); + T x_i = T(1); + for(int i=D; i>=0; --i, x_i*=x) + r += coeff[i]*x_i; + return r; +} + +template +template +inline Polynomial Polynomial::operator()(const Polynomial &p) const +{ + Polynomial r; + r.coefficient(D*G) = coeff[D]; + + LinAl::Vector cf; + cf[0] = T(1); + + for(unsigned i=1; i<=D; ++i) + { + for(int j=i*G; j>=0; --j) + { + T c = T(); + for(unsigned k=0; (k<=static_cast(j) && k<=G); ++k) + c += cf[j-k]*p.coefficient(G-k); + cf[j] = c; + } + + for(unsigned j=0; j<=i*G; ++j) + r.coefficient(D*G-j) += coeff[D-i]*cf[j]; + } + + return r; +} + +} // namespace Interpolate +} // namespace Msp + +#endif diff --git a/source/interpolate/spline.h b/source/interpolate/spline.h new file mode 100644 index 0000000..67c8df0 --- /dev/null +++ b/source/interpolate/spline.h @@ -0,0 +1,206 @@ +#ifndef MSP_INTERPOLATE_SPLINE_H_ +#define MSP_INTERPOLATE_SPLINE_H_ + +#include +#include +#include "polynomial.h" + +namespace Msp { +namespace Interpolate { + +template +struct SplineValue +{ + typedef LinAl::Vector Type; + static T get(const Type &v, unsigned i) { return v[i]; } + static Type make(const T *v) { return Type(v); } +}; + +template +struct SplineValue +{ + typedef T Type; + static T get(const Type &v, unsigned) { return v; } + static Type make(const T *v) { return *v; } +}; + +/** +Stores a spline of degree D. It is a piecewise polynomial function with value +continuity. Derivatives are not guaranteed to be continuous. + +The template parameter N controls the dimensionality of the spline's values. +Multi-dimensional splines can be used to implement parametric curves. + +While this class contains everything needed to store and evaluate splines, it +cannot be used to construct non-empty splines. See also HermiteSpline. +*/ +template +class Spline +{ +public: + typedef typename SplineValue::Type Value; + + struct Knot + { + T x; + Value y; + + Knot(): x(T()) { } + Knot(T x_, const Value &y_): x(x_), y(y_) { } + }; + + struct Segment + { + Knot start_knot; + Polynomial polynomials[N]; + Knot end_knot; + + Value operator()(T) const; + }; + +private: + enum { STRIDE = sizeof(Segment)-sizeof(Knot) }; + + unsigned short n_segments; + unsigned short capacity; + char *segments; + +public: + Spline(); +protected: + Spline(const Knot &); +public: + Spline(const Spline &); + Spline &operator=(const Spline &); + ~Spline(); + +private: + static unsigned data_size(unsigned n) { return sizeof(Knot)+n*STRIDE; } +protected: + void reserve(unsigned); + void add_segment(const Polynomial [N], T); + +public: + unsigned degree() const { return D; } + unsigned size() const { return n_segments; } + const Segment &segment(unsigned i) const; + const Knot &knot(unsigned i) const { return i==0 ? segment(0).start_knot : segment(i-1).end_knot; } + const Polynomial &polynomial(unsigned i, unsigned j = 0) const { return segment(i).polynomials[j]; } + + Value operator()(T) const; +}; + +template +inline Spline::Spline(): + n_segments(0), + capacity(0), + segments(0) +{ } + +template +inline Spline::Spline(const Knot &k): + n_segments(0), + capacity(0), + segments(new char[sizeof(Knot)]) +{ + new(segments) Knot(k); +} + +template +inline Spline::Spline(const Spline &s): + n_segments(0), + capacity(0), + segments(0) +{ + *this = s; +} + +template +inline Spline &Spline::operator=(const Spline &s) +{ + if(s.segments) + { + reserve(s.n_segments); + std::copy(s.segments, s.segments+data_size(s.n_segments), segments); + n_segments = s.n_segments; + } + else + { + delete[] segments; + n_segments = 0; + capacity = 0; + segments = 0; + } +} + +template +inline Spline::~Spline() +{ + delete[] segments; +} + +template +inline void Spline::reserve(unsigned n) +{ + if(n +inline void Spline::add_segment(const Polynomial polys[N], T end_x) +{ + if(!segments) + throw std::logic_error("Spline::add_segment"); + + if(n_segments==capacity) + reserve(n_segments+1); + ++n_segments; + + Segment &seg = *reinterpret_cast(segments+(n_segments-1)*STRIDE); + std::copy(polys, polys+N, seg.polynomials); + seg.end_knot.x = end_x; + seg.end_knot.y = seg(end_x); +} + +template +inline const typename Spline::Segment &Spline::segment(unsigned i) const +{ + return *reinterpret_cast(segments+i*STRIDE); +} + +template +inline typename Spline::Value Spline::operator()(T x) const +{ + if(!n_segments) + return Value(); + + const Segment *seg = &segment(0); + for(unsigned i=1; (iseg->end_knot.x); ++i) + seg = &segment(i); + + return (*seg)(x); +} + +template +inline typename Spline::Value Spline::Segment::operator()(T x) const +{ + T v[N]; + for(unsigned i=0; i::make(v); +} + +} // namespace Interpolate +} // namespace Msp + +#endif