self.tbn_vecs = mesh.tbn_vecs
self.vertex_groups = mesh.vertex_groups
+ # Clone basic data
self.vertices = [Vertex(v) for v in self.vertices]
+ for v in self.vertices:
+ v.groups = [VertexGroup(g) for g in v.groups]
+
self.faces = [Face(f) for f in self.polygons]
self.edges = [Edge(e) for e in self.edges]
self.loops = self.loops[:]
-
self.materials = self.materials[:]
+
+ # Clone only the desired UV layers
if self.use_uv=='NONE' or not self.uv_layers:
self.uv_layers = []
else:
if self.use_uv=='UNIT0':
self.uv_layers = [self.uv_layers[0]]
+ # Assign texture unit numbers to UV layers that lack one
next_unit = max((u.unit+1 for u in self.uv_layers if u.unit is not None), default=0)
for u in self.uv_layers:
if not u.unit:
u.unit = next_unit
next_unit += 1
- for v in self.vertices:
- v.groups = [VertexGroup(g) for g in v.groups]
-
+ # Rewrite links between elements to point to cloned data, or create links
+ # where they don't exist
edge_map = {e.key: e for e in self.edges}
for f in self.faces:
if len(f.vertices)>4:
for v in e.vertices:
v.edges.append(e)
+ # Store loose edges as lines
if self.use_lines:
self.lines = [Line(e) for e in self.edges if not e.faces]
else:
if u.name!=other.uv_layers[i].name:
raise ValueError("Meshes have incompatible UV layers")
+ # Merge materials and form a lookup from source material indices to the
+ # merged material list
material_map = []
for m in other.materials:
if m in self.materials:
material_map.append(len(self.materials))
self.materials.append(m)
+ # Append data and adjust indices where necessary. Since the data is
+ # spliced from the source mesh, rebuilding references is not necessary.
for i, u in enumerate(self.uv_layers):
u.uvs += other.uv_layers[i].uvs
for i in f.loop_indices:
layer.uvs[i] = uv
+ # Form a list of UV layers referenced by materials with the array atlas
+ # property set
array_uv_layers = [t.uv_layer for m in self.materials if m.array_atlas for t in m.texture_slots if t and t.texture_coords=='UV']
array_uv_layers = [u for u in self.uv_layers if u.name in array_uv_layers]
for i in f.loop_indices:
l.uvs[i] = mathutils.Vector((*l.uvs[i], layer))
+ # Copy UVs from layers to faces
for f in self.faces:
for u in self.uv_layers:
f.uvs.append([u.uvs[i] for i in f.loop_indices])
prog_count = len(self.uv_layers)
prog_step = 0
+ # Split by the UV layer used for TBN vectors first so connectivity
+ # remains intact for TBN vector computation
tbn_layer_index = -1
if self.tbn_vecs:
uv_names = [u.name for u in self.uv_layers]
progress.pop_task()
prog_step = 2
+ # Split by the remaining UV layers
for i, u in enumerate(self.uv_layers):
if i==tbn_layer_index:
continue
progress.pop_task()
prog_step += 1
+ # Copy UVs from faces to vertices
for v in self.vertices:
if v.faces:
+ # All faces still connected to the vertex have the same UV value
f = v.faces[0]
i = f.vertices.index(v)
v.uvs = [u[i] for u in f.uvs]
for f in v.faces:
f.flag = False
+ # Find all groups of faces on this vertex
groups = []
for f in v.faces:
if not f.flag:
groups.append(find_group_func(v, f, *args))
+ # Give groups after the first separate copies of the vertex
for g in groups[1:]:
nv = Vertex(v)
nv.index = len(self.vertices)
continue
if len(e_faces_in_g)<len(e.faces):
+ # Create a copy of an edge at the boundary of the group
ne = Edge(e)
ne.index = len(self.edges)
self.edges.append(ne)
e.key = make_edge_key(e.vertices[0].index, e.vertices[1].index)
+ # Filter out any edges that were removed from the original vertex
v.edges = [e for e in v.edges if v in e.vertices]
for f in g:
edge1 = fv[1].co-fv[0].co
edge2 = fv[-1].co-fv[0].co
if edge1.length and edge2.length:
+ # Use the angle between edges as a weighting factor. This gives
+ # more consistent normals on bends with an inequal number of
+ # faces on each side.
v.normal += f.normal*edge1.angle(edge2)
if v.normal.length:
progress.set_progress(i/len(self.vertices))
def compute_tbn(self, index, progress):
+ # This function is called at an early stage during UV preparation when
+ # face UVs are not available yet
layer_uvs = self.uv_layers[index].uvs
for i, v in enumerate(self.vertices):
progress.set_task("Preparing UVs", 0.7, 1.0)
mesh.prepare_uv(obj, progress)
+ # Discard the temporary Blender meshes after making sure there's no
+ # references to the data
mesh.drop_references()
for m in bmeshes:
bpy.data.meshes.remove(m)