]> git.tdb.fi Git - model-railway-devices.git/commitdiff
Rewrite ADC code to cause less timing interference
authorMikko Rasa <tdb@tdb.fi>
Mon, 21 Oct 2013 23:15:31 +0000 (02:15 +0300)
committerMikko Rasa <tdb@tdb.fi>
Mon, 21 Oct 2013 23:15:31 +0000 (02:15 +0300)
Doing divisions in ISR is bad, mkay?  The new code uses a different method
which avoids divisions altogether and is much more accurate too.

arducontrol/monitor.c

index c88a0717e1106dcc9d8e6d3d881e69ee87947ce0..679c62a1b2e1bd4617d6da240a7ad0fb53673bf3 100644 (file)
@@ -7,7 +7,7 @@
 uint16_t track_current_samples[16] = { 0 };
 uint8_t track_current_head = 0;
 volatile uint16_t track_current_sum = 0;
-uint16_t overcurrent_limit = 1000<<4;
+uint16_t overcurrent_limit = 8796;
 uint8_t overcurrent_sent = 0;
 
 uint16_t input_voltage_samples[16] = { 0 };
@@ -15,6 +15,10 @@ uint8_t input_voltage_head = 0;
 volatile uint16_t input_voltage_sum = 0;
 
 volatile uint8_t adc_state = 0;
+volatile uint16_t adc_value = 0;
+
+uint16_t track_current_milliamps();
+uint16_t input_voltage_millivolts();
 
 void monitor_init()
 {
@@ -25,22 +29,41 @@ void monitor_check()
 {
        if(!(adc_state&1))
        {
-               ++adc_state;
-               adc_read_async(adc_state>>1);
-       }
+               uint16_t value = adc_value;
 
-       if(track_current_sum>overcurrent_limit)
-       {
-               output_set_power(0);
-               if(!overcurrent_sent)
+               if(adc_state==2)
+               {
+                       uint8_t i = track_current_head;
+                       track_current_sum -= track_current_samples[i];
+                       track_current_samples[i] = value;
+                       track_current_sum += value;
+                       track_current_head = (i+1)&15;
+
+                       if(track_current_sum>overcurrent_limit)
+                       {
+                               output_set_power(0);
+                               if(!overcurrent_sent)
+                               {
+                                       overcurrent_sent = 1;
+                                       serial_write(0xFE);
+                                       serial_write(OVERCURRENT);
+                               }
+                       }
+                       else
+                               overcurrent_sent = 0;
+               }
+               else if(adc_state==4)
                {
-                       overcurrent_sent = 1;
-                       serial_write(0xFE);
-                       serial_write(OVERCURRENT);
+                       uint8_t i = input_voltage_head;
+                       input_voltage_sum -= input_voltage_samples[i];
+                       input_voltage_samples[i] = value;
+                       input_voltage_sum += value;
+                       input_voltage_head = (i+1)&15;
                }
+
+               adc_state = (adc_state+1)&3;
+               adc_read_async(adc_state>>1);
        }
-       else
-               overcurrent_sent = 0;
 }
 
 uint8_t monitor_command()
@@ -52,7 +75,7 @@ uint8_t monitor_command()
 
                serial_write(0xFC);
                serial_write(TRACK_CURRENT);
-               uint16_t value = track_current_sum>>4;
+               uint16_t value = track_current_milliamps();
                serial_write(value>>8);
                serial_write(value);
        }
@@ -61,10 +84,14 @@ uint8_t monitor_command()
                if(cmd_length!=3)
                        return LENGTH_ERROR;
 
-               if(cmd_buf[1]&0xF0)
+               uint16_t value = (cmd_buf[1]<<8) | cmd_buf[2];
+               if(value>4000)  // Safe maximum value
                        return INVALID_VALUE;
 
-               overcurrent_limit = (cmd_buf[1]<<12) | (cmd_buf[2]<<4);
+               // Convert from milliamps: (512+v/1000*0.185/5*1024)*16
+               // multiply by 16384*0.185/5000 = 0.1001101100110b
+               uint16_t v_3 = value*3;
+               overcurrent_limit = 8192+(value>>1)+(v_3>>5)+(v_3>>8)+(v_3>>12);
        }
        else if(cmd_buf[0]==READ_INPUT_VOLTAGE)
        {
@@ -73,7 +100,7 @@ uint8_t monitor_command()
 
                serial_write(0xFC);
                serial_write(INPUT_VOLTAGE);
-               uint16_t value = (input_voltage_sum>>3)*5;
+               uint16_t value = input_voltage_millivolts();
                serial_write(value>>8);
                serial_write(value);
        }
@@ -83,39 +110,36 @@ uint8_t monitor_command()
        return COMMAND_OK;
 }
 
-static inline void adc_complete(uint16_t value)
+uint16_t track_current_milliamps()
 {
-       if(adc_state==1)
-       {
-               // Convert to milliamps: (v*5/1024-2.5)*1000/0.185
-               if(value<512)  // Ignore negative current readings
-                       value = 0;
-               else if(value>663)  // Limit range so averaging won't overflow
-                       value = 4000;
-               else
-                       value = (value-512)*132/5;
-
-               uint8_t i = track_current_head;
-               track_current_sum -= track_current_samples[i];
-               track_current_samples[i] = value;
-               track_current_sum += value;
-               track_current_head = (i+1)&15;
-       }
-       else if(adc_state==3)
+       uint16_t value = track_current_sum;
+
+       // Convert to milliamps: (v/16*5/1024-2.5)*1000/0.185
+       if(value<8192)  // Ignore negative current readings
+               return 0;
+       else
        {
-               // Convert to centivolts: (v*5/1024)*100*11
-               if(value>744) // Limit range so averaging won't overflow
-                       value = 4000;
-               else
-                       value = value*43/8;
-
-               uint8_t i = input_voltage_head;
-               input_voltage_sum -= input_voltage_samples[i];
-               input_voltage_samples[i] = value;
-               input_voltage_sum += value;
-               input_voltage_head = (i+1)&15;
+               value -= 8192;
+
+               // multiply by 5000/0.185/16384 = 1.1010011001001b
+               int16_t v_3 = value*3;
+               return (v_3>>1)+(value>>3)+(v_3>>7)+(value>>10)+(v_3>>13);
        }
+}
 
+uint16_t input_voltage_millivolts()
+{
+       uint16_t value = input_voltage_sum;
+
+       // Convert to millivolts: (v/16*5/1024)*1000*11
+       // multiply by 55000/16384 = 11.0101101101100b
+       uint16_t v_3 = value*3;
+       return v_3+(value>>2)+(v_3>>5)+(v_3>>8)+(v_3>>11);
+}
+
+static inline void adc_complete(uint16_t value)
+{
+       adc_value = value;
        ++adc_state;
 }