X-Git-Url: http://git.tdb.fi/?a=blobdiff_plain;f=blender%2Fio_mspgl%2Fmesh.py;h=3f9ab02e2bd3dabf8493088b114f398c77983659;hb=f241ccca7d0d3f3073a948377bd557a70aa8f1d2;hp=62d7506303b349d9e3af9f914f5b4e39d0e6319f;hpb=306be12bfad9de3c0fee353feaaa9904bc925fb6;p=libs%2Fgl.git diff --git a/blender/io_mspgl/mesh.py b/blender/io_mspgl/mesh.py index 62d75063..3f9ab02e 100644 --- a/blender/io_mspgl/mesh.py +++ b/blender/io_mspgl/mesh.py @@ -1,25 +1,25 @@ import bpy import math import mathutils +import itertools def make_edge_key(i1, i2): return (min(i1, i2), max(i1, i2)) class Edge: - def __init__(self, me): - if me.__class__==Edge: - self._medge = me._medge - self.vertices = me.vertices[:] - self.smooth = me.smooth + def __init__(self, edge): + if edge.__class__==Edge: + self.smooth = edge.smooth else: - self._medge = me self.smooth = False - self.key = me.key + if edge: + self.vertices = edge.vertices[:] + self.key = edge.key + else: + self.vertices = [] + self.key = None self.faces = [] - def __getattr__(self, attr): - return getattr(self._medge, attr) - def check_smooth(self, limit): if len(self.faces)!=2: return @@ -44,27 +44,21 @@ class Edge: class Vertex: - def __init__(self, mv): - if mv.__class__==Vertex: - self._mvert = mv._mvert - self.uvs = mv.uvs[:] - self.tan = mv.tan - self.bino = mv.bino + def __init__(self, vertex): + if vertex.__class__==Vertex: + self.uvs = vertex.uvs[:] + self.tan = vertex.tan else: - self._mvert = mv self.uvs = [] self.tan = None - self.bino = None - self.index = mv.index - self.co = mv.co - self.normal = mv.normal + self.index = vertex.index + self.co = mathutils.Vector(vertex.co) + self.normal = mathutils.Vector(vertex.normal) + self.color = None self.flag = False self.edges = [] self.faces = [] - self.groups = mv.groups[:] - - def __getattr__(self, attr): - return getattr(self._mvert, attr) + self.groups = vertex.groups[:] def __cmp__(self, other): if other is None: @@ -73,40 +67,40 @@ class Vertex: class VertexGroup: - def __init__(self, base): - self._base = base - self.group = base.group - self.weight = base.weight - - def __getattr__(self, attr): - return getattr(self._mvert, attr) + def __init__(self, group): + if group: + self.group = group.group + self.weight = group.weight + else: + self.group = 0 + self.weight = 0.0 class Face: - def __init__(self, mf): - self._mface = mf - self.index = mf.index + def __init__(self, face): + self.index = face.index self.edges = [] - self.vertices = mf.vertices[:] - self.uvs = [] + self.edge_keys = face.edge_keys + self.vertices = face.vertices[:] + self.loop_indices = face.loop_indices + self.normal = face.normal + self.use_smooth = face.use_smooth + self.material_index = face.material_index self.flag = False - def __getattr__(self, attr): - return getattr(self._mface, attr) - def __cmp__(self, other): if other is None: return 1 return cmp(self.index, other.index) - def pivot_vertices(self, *vt): - flags = [(v in vt) for v in self.vertices] - l = len(self.vertices) - for i in range(l): - if flags[i] and not flags[(i+l-1)%l]: - return self.vertices[i:]+self.vertices[:i] + def pivot_vertex(self, v): + n = self.vertices.index(v) + return [(n+i)%len(self.vertices) for i in range(len(self.vertices))] - def get_edge(self, v1, v2): + def get_loop_index(self, v): + return self.loop_indices[self.vertices.index(v)] + + def get_edge(self, v1, v2): key = make_edge_key(v1.index, v2.index) for e in self.edges: if e.key==key: @@ -133,12 +127,11 @@ class Line: class UvLayer: def __init__(self, arg): if type(arg)==str: - self._layer = None self.name = arg + self.uvs = [] else: - self._layer = arg self.name = arg.name - self.uvs = [d.uv for d in self.data] + self.uvs = [mathutils.Vector(d.uv) for d in arg.data] self.unit = None self.hidden = False @@ -151,43 +144,67 @@ class UvLayer: elif ext==".hidden": self.hidden = True - def __getattr__(self, attr): - return getattr(self._layer, attr) + +class ColorLayer: + def __init__(self, l): + self.name = l.name + self.colors = [c.color[:] for c in l.data] class Mesh: - def __init__(self, m): - self._mesh = m + def __init__(self, mesh): + self.name = mesh.name + + self.winding_test = mesh.winding_test + self.smoothing = mesh.smoothing + self.use_uv = mesh.use_uv + self.tangent_uvtex = mesh.tangent_uvtex + self.use_strips = mesh.use_strips + self.vertex_groups = mesh.vertex_groups + + # Clone basic data + self.vertices = [Vertex(v) for v in mesh.vertices] + if self.vertex_groups: + for v in self.vertices: + v.groups = [VertexGroup(g) for g in v.groups] - self.winding_test = m.winding_test - self.tbn_vecs = m.tbn_vecs - self.vertex_groups = m.vertex_groups + self.faces = [Face(f) for f in mesh.polygons] + self.edges = [Edge(e) for e in mesh.edges] + self.loops = mesh.loops[:] + self.materials = mesh.materials[:] - self.vertices = [Vertex(v) for v in self.vertices] - self.faces = [Face(f) for f in self.polygons] - self.edges = [Edge(e) for e in self.edges] - self.edge_map = {e.key: e for e in self.edges} - self.loops = self.loops[:] + self.use_auto_smooth = mesh.use_auto_smooth + self.auto_smooth_angle = mesh.auto_smooth_angle + self.max_groups_per_vertex = mesh.max_groups_per_vertex - self.materials = self.materials[:] - if self.use_uv=='NONE': + # Clone only the desired UV layers + if mesh.use_uv=='NONE' or not mesh.uv_layers: self.uv_layers = [] - elif self.uv_layers: - self.uv_layers = [UvLayer(u) for u in self.uv_layers] - self.uv_layers = sorted([u for u in self.uv_layers if not u.hidden], key=(lambda u: (u.unit or 1000, u.name))) + else: + self.uv_layers = [UvLayer(u) for u in mesh.uv_layers] - if self.use_uv=='UNIT0': - self.uv_layers = [self.uv_layers[0]] + # Assign texture unit numbers to UV layers that lack one + missing_unit = [u for u in self.uv_layers if u.unit is None] + if missing_unit: + missing_unit = sorted(missing_unit, key=(lambda u: u.name)) + used_units = [u.unit for u in self.uv_layers if u.unit is not None] + for u, n in zip(missing_unit, (i for i in itertools.count() if i not in used_units)): + u.unit = n - next_unit = max((u.unit+1 for u in self.uv_layers if u.unit is not None), default=0) - for u in self.uv_layers: - if not u.unit: - u.unit = next_unit - next_unit += 1 + self.uv_layers = sorted(self.uv_layers, key=(lambda u: u.unit)) - for v in self.vertices: - v.groups = [VertexGroup(g) for g in v.groups] + if mesh.use_uv=='UNIT0': + self.uv_layers = [self.uv_layers[0]] + if self.uv_layers[0].unit!=0: + self.uv_layers = [] + + self.colors = None + if mesh.vertex_colors: + self.colors = ColorLayer(mesh.vertex_colors[0]) + # Rewrite links between elements to point to cloned data, or create links + # where they don't exist + edge_map = {e.key: e for e in self.edges} for f in self.faces: if len(f.vertices)>4: raise ValueError("Ngons are not supported") @@ -197,7 +214,7 @@ class Mesh: v.faces.append(f) for k in f.edge_keys: - e = self.edge_map[k] + e = edge_map[k] e.faces.append(f) f.edges.append(e) @@ -206,17 +223,32 @@ class Mesh: for v in e.vertices: v.edges.append(e) - if self.use_lines: + # Store loose edges as lines + if mesh.use_lines: self.lines = [Line(e) for e in self.edges if not e.faces] else: self.lines = [] - def __getattr__(self, attr): - return getattr(self._mesh, attr) + # Check if tangent vectors are needed + if mesh.tangent_vecs=='NO': + self.tangent_vecs = False + elif mesh.tangent_vecs=='YES': + self.tangent_vecs = True + elif mesh.tangent_vecs=='AUTO': + from .material import Material + self.tangent_vecs = False + for m in self.materials: + mat = Material(m) + if mat.type=="pbr": + normal_prop = next((p for p in mat.properties if p.tex_keyword=="normal_map"), None) + if normal_prop and normal_prop.texture: + self.tangent_vecs = True + + self.vertex_sequence = [] def transform(self, matrix): for v in self.vertices: - v.co = matrix*v.co + v.co = matrix@v.co def splice(self, other): if len(self.uv_layers)!=len(other.uv_layers): @@ -225,17 +257,30 @@ class Mesh: if u.name!=other.uv_layers[i].name: raise ValueError("Meshes have incompatible UV layers") - material_map = [] + # Merge materials and form a lookup from source material indices to the + # merged material list + material_atlas = [] for m in other.materials: if m in self.materials: - material_map.append(self.materials.index(m)) + material_atlas.append(self.materials.index(m)) else: - material_map.append(len(self.materials)) + material_atlas.append(len(self.materials)) self.materials.append(m) + # Append data and adjust indices where necessary. Since the data is + # spliced from the source mesh, rebuilding references is not necessary. for i, u in enumerate(self.uv_layers): u.uvs += other.uv_layers[i].uvs + if self.colors: + if other.colors: + self.colors.colors += other.colors.colors + else: + self.colors.colors += [(1.0, 1.0, 1.0, 1.0)]*len(other.loops) + elif other.colors: + self.colors = ColorLayer(other.colors.name) + self.colors.colors = [(1.0, 1.0, 1.0, 1.0)]*len(self.loops)+other.colors.colors + offset = len(self.vertices) self.vertices += other.vertices for v in self.vertices[offset:]: @@ -248,21 +293,81 @@ class Mesh: self.faces += other.faces for f in self.faces[offset:]: f.index += offset - f.loop_start += loop_offset - f.loop_indices = range(f.loop_start, f.loop_start+f.loop_total) + f.loop_indices = range(f.loop_indices.start+offset, f.loop_indices.stop+offset) if other.materials: - f.material_index = material_map[f.material_index] + f.material_index = material_atlas[f.material_index] offset = len(self.edges) self.edges += other.edges for e in self.edges[offset:]: e.index += offset e.key = make_edge_key(e.vertices[0].index, e.vertices[1].index) - self.edge_map[e.key] = e self.lines += other.lines - def prepare_smoothing(self, progress=None): + def prepare_triangles(self, progress): + face_count = len(self.faces) + for i in range(face_count): + f = self.faces[i] + nverts = len(f.vertices) + if nverts==3: + continue + + # Calculate normals at each vertex of the face + edge_vecs = [] + for j in range(nverts): + edge_vecs.append(f.vertices[(j+1)%nverts].co-f.vertices[j].co) + + normals = [] + for j in range(nverts): + normals.append(edge_vecs[j-1].cross(edge_vecs[j]).normalized()) + + # Check which diagonal results in a flatter triangulation + flatness1 = normals[0].dot(normals[2]) + flatness2 = normals[1].dot(normals[3]) + cut_index = 1 if flatness1>flatness2 else 0 + + nf = Face(f) + nf.index = len(self.faces) + self.faces.append(nf) + + ne = Edge(None) + ne.index = len(self.edges) + self.edges.append(ne) + + nf.vertices = [f.vertices[cut_index], f.vertices[2], f.vertices[3]] + nf.loop_indices = [f.loop_indices[cut_index], f.loop_indices[2], f.loop_indices[3]] + for v in nf.vertices: + v.faces.append(nf) + + ne.vertices = [f.vertices[cut_index], f.vertices[2+cut_index]] + for v in ne.vertices: + v.edges.append(ne) + ne.key = make_edge_key(ne.vertices[0].index, ne.vertices[1].index) + ne.smooth = True + + f.vertices[3-cut_index].faces.remove(f) + del f.vertices[3-cut_index] + f.loop_indices = [f.loop_indices[0], f.loop_indices[1], f.loop_indices[2+cut_index]] + + ne.faces = [f, nf] + if cut_index==0: + nf.edges = [ne, f.edges[2], f.edges[3]] + f.edges = [f.edges[0], f.edges[1], ne] + else: + nf.edges = [f.edges[1], f.edges[2], ne] + f.edges = [f.edges[0], ne, f.edges[3]] + for e in nf.edges: + if e!=ne: + e.faces.remove(f) + e.faces.append(nf) + + f.normal = normals[1-cut_index] + nf.normal = normals[3-cut_index] + + progress.set_progress(i/face_count) + + def prepare_smoothing(self, progress): smooth_limit = -1 if self.smoothing=='NONE': for f in self.faces: @@ -275,12 +380,19 @@ class Mesh: for e in self.edges: e.check_smooth(smooth_limit) + progress.push_task("Sharp edges", 0.0, 0.7) self.split_vertices(self.find_smooth_group, progress) if self.smoothing!='BLENDER': - self.compute_normals() + progress.set_task("Updating normals", 0.7, 1.0) + self.compute_normals(progress) + + progress.pop_task() def prepare_vertex_groups(self, obj): + if not self.vertex_groups: + return + for v in self.vertices: if v.groups: weight_sum = sum(g.weight for g in v.groups) @@ -288,6 +400,8 @@ class Mesh: weight_scale = weight_sum/sum(g.weight for g in v.groups) for g in v.groups: g.weight *= weight_scale + while len(v.groups)=0: + prog_count += 1 + progress.push_task_slice("Computing tangents", 0, prog_count) + self.split_vertices(self.find_uv_group, progress, tangent_layer_index) + progress.set_task_slice(self.tangent_uvtex, 1, prog_count) + self.compute_tangents(tangent_layer_index, progress) + progress.pop_task() + prog_step = 2 + else: + raise Exception("Tangent UV layer not found") + + # Split by the remaining UV layers + for i, u in enumerate(self.uv_layers): + if i==tangent_layer_index: + continue + + progress.push_task_slice(u.name, prog_step, prog_count) self.split_vertices(self.find_uv_group, progress, i) + progress.pop_task() + prog_step += 1 + # Copy UVs from layers to vertices for v in self.vertices: if v.faces: + # All faces still connected to the vertex have the same UV value f = v.faces[0] - i = f.vertices.index(v) - v.uvs = [u[i] for u in f.uvs] + i = f.get_loop_index(v) + v.uvs = [u.uvs[i] for u in self.uv_layers] else: v.uvs = [(0.0, 0.0)]*len(self.uv_layers) + def prepare_colors(self, progress): + if not self.colors: + return + + self.split_vertices(self.find_color_group, progress) + + for v in self.vertices: + if v.faces: + f = v.faces[0] + v.color = self.colors.colors[f.get_loop_index(v)] + else: + v.color = (1.0, 1.0, 1.0, 1.0) + def split_vertices(self, find_group_func, progress, *args): - groups = [] - for i in range(len(self.vertices)): + vertex_count = len(self.vertices) + for i in range(vertex_count): v = self.vertices[i] for f in v.faces: f.flag = False - vg = [] + # Find all groups of faces on this vertex + groups = [] for f in v.faces: if not f.flag: - vg.append(find_group_func(v, f, *args)) + groups.append(find_group_func(v, f, *args)) - groups.append(vg) + # Give groups after the first separate copies of the vertex + for g in groups[1:]: + nv = Vertex(v) + nv.index = len(self.vertices) + self.vertices.append(nv) - if progress: - progress.set_progress(i*0.5/len(self.vertices)) - - for i in range(len(self.vertices)): - for g in groups[i][1:]: - v = Vertex(self.vertices[i]) - v.index = len(self.vertices) - self.vertices.append(v) - - v_edges = [] - for e in self.vertices[i].edges: + for e in v.edges: e_faces_in_g = [f for f in e.faces if f in g] - if e_faces_in_g: - boundary = len(e_faces_in_g)best_score: + best_score = score + face = f + + if not face: + break + + reordered_faces.append(face) face.flag = True - vertices = face.pivot_vertices(*result[-2:]) - k = len(result)%2 + for v in face.vertices: + vertex_info[v.index][1] -= 1 + + # Shuffle the vertex into the front of the cache + if v in cached_vertices: + cached_vertices.remove(v) + cached_vertices.insert(0, v) + + # Update scores for all vertices in the cache + for i, v in enumerate(cached_vertices): + score = 0 + if i<3: + score += last_triangle_score + elif ibest_score: + best_score = score + face = f + + del cached_vertices[max_cache_size:] + + n_processed += 1 + progress.set_progress(n_processed/len(self.faces)) + + self.faces = reordered_faces + for i, f in enumerate(self.faces): + f.index = i + + def reorder_vertices(self): + for v in self.vertices: + v.index = -1 - # Quads need special handling because the winding of every other - # triangle in the strip is reversed - if len(vertices)==4 and not k: - result.append(vertices[3]) - result.append(vertices[2]) - if len(vertices)==4 and k: - result.append(vertices[3]) + reordered_vertices = [] + for s in self.vertex_sequence: + for v in s: + if v.index<0: + v.index = len(reordered_vertices) + reordered_vertices.append(v) - if len(result)>=max_len: - break + self.vertices = reordered_vertices - # Hop over the last edge - edge = face.get_edge(*result[-2:]) - face = edge.other_face(face) - if not face or face.flag: - break + for e in self.edges: + e.key = make_edge_key(e.vertices[0].index, e.vertices[1].index) - return result -def create_mesh_from_object(context, obj, progress=None): +def create_mesh_from_object(context, obj, material_atlas, progress): if obj.type!="MESH": raise Exception("Object is not a mesh") + progress.push_task("Preparing mesh", 0.0, 0.2) + objs = [(obj, mathutils.Matrix())] i = 0 while i