]> git.tdb.fi Git - r2c2.git/blob - source/libr2c2/vehicle.cpp
Use the tilt member in OrientedPoint in certain objects
[r2c2.git] / source / libr2c2 / vehicle.cpp
1 #include <cmath>
2 #include "catalogue.h"
3 #include "driver.h"
4 #include "layout.h"
5 #include "track.h"
6 #include "trackiter.h"
7 #include "tracktype.h"
8 #include "vehicle.h"
9 #include "vehicletype.h"
10
11 using namespace std;
12 using namespace Msp;
13
14 namespace R2C2 {
15
16 Vehicle::Vehicle(Layout &l, const VehicleType &t):
17         Object(l),
18         type(t),
19         train(0),
20         next(0),
21         prev(0),
22         front_sensor(0),
23         back_sensor(0)
24 {
25         axles.assign(type.get_fixed_axles().begin(), type.get_fixed_axles().end());
26         bogies.assign(type.get_bogies().begin(), type.get_bogies().end());
27         rods.assign(type.get_rods().begin(), type.get_rods().end());
28
29         layout.add(*this);
30 }
31
32 Vehicle::~Vehicle()
33 {
34         if(next)
35                 detach_back();
36         if(prev)
37                 detach_front();
38         layout.remove(*this);
39 }
40
41 Vehicle *Vehicle::clone(Layout *to_layout) const
42 {
43         Vehicle *veh = new Vehicle((to_layout ? *to_layout : layout), type);
44         veh->set_position(position);
45         veh->set_rotation(rotation);
46         return veh;
47 }
48
49 void Vehicle::set_train(Train *t)
50 {
51         train = t;
52 }
53
54 void Vehicle::attach_back(Vehicle &veh)
55 {
56         if(next || veh.prev)
57                 throw attachment_error("already attached");
58
59         next = &veh;
60         veh.prev = this;
61
62         if(track)
63                 propagate_backward();
64 }
65
66 void Vehicle::attach_front(Vehicle &veh)
67 {
68         if(prev || veh.next)
69                 throw attachment_error("already attached");
70
71         prev = &veh;
72         veh.next = this;
73
74         if(prev->get_track())
75                 prev->propagate_backward();
76 }
77
78 void Vehicle::detach_back()
79 {
80         if(!next)
81                 throw attachment_error("not attached");
82
83         next->prev = 0;
84         next = 0;
85 }
86
87 void Vehicle::detach_front()
88 {
89         if(!prev)
90                 throw attachment_error("not attached");
91
92         prev->next = 0;
93         prev = 0;
94 }
95
96 void Vehicle::place(const TrackIter &t, float o, PlaceMode m)
97 {
98         if(!t)
99                 throw invalid_argument("Vehicle::place");
100
101         track = TrackOffsetIter(t, o);
102
103         if(m==FRONT_AXLE)
104                 track = track.advance(-type.get_front_axle_offset());
105         else if(m==FRONT_BUFFER)
106                 track = track.advance(-type.get_length()/2);
107         else if(m==BACK_AXLE)
108                 track = track.advance(-type.get_back_axle_offset());
109         else if(m==BACK_BUFFER)
110                 track = track.advance(type.get_length()/2);
111
112         update_position();
113         propagate_position();
114 }
115
116 void Vehicle::unplace()
117 {
118         if(!track)
119                 return;
120
121         track = TrackOffsetIter();
122
123         if(prev)
124                 prev->unplace();
125         if(next)
126                 next->unplace();
127 }
128
129 void Vehicle::advance(float d)
130 {
131         track = track.advance(d);
132         update_position();
133         turn_axles(d);
134         propagate_position();
135 }
136
137 const Vehicle::Axle &Vehicle::get_fixed_axle(unsigned i) const
138 {
139         if(i>=axles.size())
140                 throw out_of_range("Vehicle::get_fixed_axle");
141         return axles[i];
142 }
143
144 const Vehicle::Bogie &Vehicle::get_bogie(unsigned i) const
145 {
146         if(i>=bogies.size())
147                 throw out_of_range("Vehicle::get_bogie");
148         return bogies[i];
149 }
150
151 const Vehicle::Axle &Vehicle::get_bogie_axle(unsigned i, unsigned j) const
152 {
153         if(i>=bogies.size())
154                 throw out_of_range("Vehicle::get_bogie_axle");
155         if(j>=bogies[i].axles.size())
156                 throw out_of_range("Vehicle::get_bogie_axle");
157         return bogies[i].axles[j];
158 }
159
160 const Vehicle::Rod &Vehicle::get_rod(unsigned i) const
161 {
162         if(i>=rods.size())
163                 throw out_of_range("Vehicle::get_rod");
164         return rods[i];
165 }
166
167 void Vehicle::update_position()
168 {
169         OrientedPoint p;
170
171         if(axles.size()>=2)
172         {
173                 float wheelbase = axles.front().type->position-axles.back().type->position;
174                 p = get_point(track, wheelbase, -axles.back().type->position/wheelbase);
175         }
176         else if(bogies.size()>=2)
177         {
178                 TrackOffsetIter front = track.advance(bogies.front().type->position);
179                 TrackOffsetIter back = track.advance(bogies.back().type->position);
180                 float bogie_spacing = bogies.front().type->position-bogies.back().type->position;
181                 adjust_for_distance(front, back, bogie_spacing);
182
183                 const vector<Axle> &front_axles = bogies.front().axles;
184                 float wheelbase = front_axles.front().type->position-front_axles.back().type->position;
185                 OrientedPoint front_point = get_point(front, wheelbase, -front_axles.back().type->position/wheelbase);
186
187                 const vector<Axle> &back_axles = bogies.back().axles;
188                 wheelbase = back_axles.front().type->position-back_axles.back().type->position;
189                 OrientedPoint back_point = get_point(back, wheelbase, -back_axles.back().type->position/wheelbase);
190
191                 p = get_point(front_point.position, back_point.position, -bogies.back().type->position/bogie_spacing);
192
193                 bogies.front().direction = front_point.rotation-p.rotation;
194                 bogies.back().direction = back_point.rotation-p.rotation;
195         }
196         else
197                 p = track.point();
198
199         if(!prev)
200                 check_sensor(type.get_front_axle_offset(), front_sensor);
201         if(!next)
202                 check_sensor(type.get_back_axle_offset(), back_sensor);
203
204         position = p.position;
205         position.z += layout.get_catalogue().get_rail_elevation();
206         rotation = p.rotation;
207         tilt = p.tilt;
208         signal_moved.emit();
209 }
210
211 void Vehicle::update_position_from(const Vehicle &veh)
212 {
213         int sign = (&veh==prev ? -1 : 1);
214
215         float tdist = (type.get_length()+veh.type.get_length())/2;
216         float margin = layout.get_catalogue().get_scale();
217
218         float dist = distance(veh.position, position);
219         if(!track || dist<tdist-margin || dist>tdist+margin)
220         {
221                 track = veh.track.advance(sign*tdist);
222                 update_position();
223
224                 dist = distance(veh.position, position);
225         }
226
227         track = track.advance(sign*(tdist-dist));
228         update_position();
229         turn_axles(sign*(tdist-dist));
230 }
231
232 void Vehicle::propagate_position()
233 {
234         if(prev)
235                 propagate_forward();
236         if(next)
237                 propagate_backward();
238 }
239
240 void Vehicle::propagate_forward()
241 {
242         prev->update_position_from(*this);
243
244         if(prev->prev)
245                 prev->propagate_forward();
246 }
247
248 void Vehicle::propagate_backward()
249 {
250         next->update_position_from(*this);
251
252         if(next->next)
253                 next->propagate_backward();
254 }
255
256 void Vehicle::check_sensor(float offset, unsigned &sensor)
257 {
258         TrackOffsetIter iter = track.advance(offset);
259         unsigned s = iter->get_sensor_id();
260         if(s!=sensor)
261         {
262                 /* Sensor ID under axle has changed.  Deduce movement direction by using
263                 the sensor ID under the midpoint of the vehicle. */
264                 /* XXX This depends on the simulation running fast enough.  Something
265                 more robust would be preferable. */
266                 unsigned old = sensor;
267                 sensor = s;
268                 unsigned mid = track->get_sensor_id();
269
270                 if(s && s!=mid)
271                         /* There's a sensor and it's different from mid.  We've just entered
272                         that sensor. */
273                         layout.get_driver().set_sensor(sensor, true);
274                 if(old && old!=mid)
275                         /* A sensor was under the axle and it was different from mid.  We've
276                         just left that sensor. */
277                         layout.get_driver().set_sensor(old, false);
278         }
279 }
280
281 void Vehicle::turn_axles(float d)
282 {
283         for(vector<Axle>::iterator i=axles.begin(); i!=axles.end(); ++i)
284                 i->angle += Angle::from_radians(d*2/i->type->wheel_dia);
285         for(vector<Bogie>::iterator i=bogies.begin(); i!=bogies.end(); ++i)
286                 for(vector<Axle>::iterator j=i->axles.begin(); j!=i->axles.end(); ++j)
287                         j->angle += Angle::from_radians(d*2/j->type->wheel_dia);
288
289         update_rods();
290 }
291
292 void Vehicle::update_rods()
293 {
294         for(vector<Rod>::iterator i=rods.begin(); i!=rods.end(); ++i)
295         {
296                 if(i->type->pivot==VehicleType::Rod::BODY)
297                         i->position = i->type->pivot_point;
298                 else if(i->type->pivot==VehicleType::Rod::AXLE)
299                 {
300                         const Axle &axle = get_fixed_axle(i->type->pivot_index);
301                         const Vector &pp = i->type->pivot_point;
302                         Transform trans = Transform::rotation(axle.angle, Vector(0, -1, 0));
303                         i->position = Vector(axle.type->position, 0, axle.type->wheel_dia/2)+trans.transform(pp);
304                 }
305                 else if(i->type->pivot==VehicleType::Rod::ROD)
306                 {
307                         const Rod &prod = get_rod(i->type->pivot_index);
308                         const Vector &pos = prod.position;
309                         const Vector &off = i->type->pivot_point;
310                         Transform trans = Transform::rotation(prod.angle, Vector(0, 1, 0));
311                         i->position = pos+trans.transform(off);
312                 }
313
314                 if(i->type->connect_index>=0)
315                 {
316                         Rod &crod = rods[i->type->connect_index];
317                         if(i->type->limit==VehicleType::Rod::ROTATE && crod.type->limit==VehicleType::Rod::SLIDE_X)
318                         {
319                                 Vector span = crod.position+i->type->connect_offset-i->position;
320                                 float cd = i->type->connect_point.norm();
321                                 Angle ca = Geometry::atan2(i->type->connect_point.z, i->type->connect_point.x);
322                                 span.x = sqrt(cd*cd-span.z*span.z)*(span.x>0 ? 1 : -1);
323                                 i->angle = Geometry::atan2(span.z, span.x)-ca;
324                                 crod.position.x = i->position.x+span.x-i->type->connect_offset.x;
325                         }
326                         else if(i->type->limit==VehicleType::Rod::ROTATE && crod.type->limit==VehicleType::Rod::ROTATE)
327                         {
328                                 Vector span = crod.position-i->position;
329                                 float d = span.norm();
330                                 float cd1 = i->type->connect_point.norm();
331                                 float cd2 = i->type->connect_offset.norm();
332                                 float a = (d*d+cd1*cd1-cd2*cd2)/(2*d);
333                                 float b = sqrt(cd1*cd1-a*a);
334                                 float sign = (cross(i->type->connect_point, span).y>0 ? 1 : -1);
335                                 Vector conn = Vector(span.x*a-span.z*b, 0, span.z*a+span.x*b)/(d*sign);
336                                 Angle ca1 = Geometry::atan2(i->type->connect_point.z, i->type->connect_point.x);
337                                 Angle ca2 = Geometry::atan2(i->type->connect_offset.z, i->type->connect_offset.x);
338                                 i->angle = Geometry::atan2(conn.z, conn.x)-ca1;
339                                 crod.angle = Geometry::atan2(conn.z-span.z, conn.x-span.x)-ca2;
340                         }
341                 }
342         }
343 }
344
345 void Vehicle::adjust_for_distance(TrackOffsetIter &front, TrackOffsetIter &back, float tdist, float ratio) const
346 {
347         float margin = 0.01*layout.get_catalogue().get_scale();
348         int adjust_dir = 0;
349         while(1)
350         {
351                 Vector front_point = front.point().position;
352                 Vector back_point = back.point().position;
353
354                 float dist = distance(front_point, back_point);
355
356                 float diff = tdist-dist;
357                 if(diff<-margin && adjust_dir<=0)
358                 {
359                         diff -= margin;
360                         adjust_dir = -1;
361                 }
362                 else if(diff>margin && adjust_dir>=0)
363                 {
364                         diff += margin;
365                         adjust_dir = 1;
366                 }
367                 else
368                         return;
369
370                 front = front.advance(diff*(1-ratio));
371                 back = back.advance(-diff*ratio);
372         }
373 }
374
375 OrientedPoint Vehicle::get_point(const Vector &front, const Vector &back, float ratio) const
376 {
377         Vector span = front-back;
378
379         OrientedPoint p;
380         p.position = back+span*ratio;
381         p.rotation = Geometry::atan2(span.y, span.x);
382         p.tilt = Geometry::atan2(span.z, LinAl::Vector<float, 2>(span).norm());
383
384         return p;
385 }
386
387 OrientedPoint Vehicle::get_point(const TrackOffsetIter &iter, float tdist, float ratio) const
388 {
389         TrackOffsetIter front = iter.advance(tdist*(1-ratio));
390         TrackOffsetIter back = iter.advance(-tdist*ratio);
391
392         adjust_for_distance(front, back, tdist, ratio);
393         return get_point(front.point().position, back.point().position, ratio);
394 }
395
396 unsigned Vehicle::get_n_link_slots() const
397 {
398         return 2;
399 }
400
401 Vehicle *Vehicle::get_link(unsigned i) const
402 {
403         if(i>=2)
404                 throw out_of_range("Vehicle::get_link");
405
406         return (i==0 ? prev : next);
407 }
408
409 int Vehicle::get_link_slot(const Object &other) const
410 {
411         if(&other==prev)
412                 return 0;
413         else if(&other==next)
414                 return 1;
415         else
416                 return -1;
417 }
418
419
420 Vehicle::Axle::Axle(const VehicleType::Axle &t):
421         type(&t)
422 { }
423
424
425 Vehicle::Bogie::Bogie(const VehicleType::Bogie &t):
426         type(&t)
427 {
428         for(VehicleType::AxleArray::const_iterator i=type->axles.begin(); i!=type->axles.end(); ++i)
429                 axles.push_back(*i);
430 }
431
432
433 Vehicle::Rod::Rod(const VehicleType::Rod &t):
434         type(&t)
435 { }
436
437 } // namespace R2C2