]> git.tdb.fi Git - ext/openal.git/blob - alc/panning.cpp
Import OpenAL Soft 1.23.1 sources
[ext/openal.git] / alc / panning.cpp
1 /**
2  * OpenAL cross platform audio library
3  * Copyright (C) 1999-2010 by authors.
4  * This library is free software; you can redistribute it and/or
5  *  modify it under the terms of the GNU Library General Public
6  *  License as published by the Free Software Foundation; either
7  *  version 2 of the License, or (at your option) any later version.
8  *
9  * This library is distributed in the hope that it will be useful,
10  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  *  Library General Public License for more details.
13  *
14  * You should have received a copy of the GNU Library General Public
15  *  License along with this library; if not, write to the
16  *  Free Software Foundation, Inc.,
17  *  51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18  * Or go to http://www.gnu.org/copyleft/lgpl.html
19  */
20
21 #include "config.h"
22
23 #include <algorithm>
24 #include <array>
25 #include <cassert>
26 #include <chrono>
27 #include <cmath>
28 #include <cstdio>
29 #include <cstring>
30 #include <functional>
31 #include <iterator>
32 #include <memory>
33 #include <new>
34 #include <numeric>
35 #include <string>
36
37 #include "AL/al.h"
38 #include "AL/alc.h"
39 #include "AL/alext.h"
40
41 #include "al/auxeffectslot.h"
42 #include "albit.h"
43 #include "alconfig.h"
44 #include "alc/context.h"
45 #include "almalloc.h"
46 #include "alnumbers.h"
47 #include "alnumeric.h"
48 #include "aloptional.h"
49 #include "alspan.h"
50 #include "alstring.h"
51 #include "alu.h"
52 #include "core/ambdec.h"
53 #include "core/ambidefs.h"
54 #include "core/bformatdec.h"
55 #include "core/bs2b.h"
56 #include "core/devformat.h"
57 #include "core/front_stablizer.h"
58 #include "core/hrtf.h"
59 #include "core/logging.h"
60 #include "core/uhjfilter.h"
61 #include "device.h"
62 #include "opthelpers.h"
63
64
65 namespace {
66
67 using namespace std::placeholders;
68 using std::chrono::seconds;
69 using std::chrono::nanoseconds;
70
71 inline const char *GetLabelFromChannel(Channel channel)
72 {
73     switch(channel)
74     {
75         case FrontLeft: return "front-left";
76         case FrontRight: return "front-right";
77         case FrontCenter: return "front-center";
78         case LFE: return "lfe";
79         case BackLeft: return "back-left";
80         case BackRight: return "back-right";
81         case BackCenter: return "back-center";
82         case SideLeft: return "side-left";
83         case SideRight: return "side-right";
84
85         case TopFrontLeft: return "top-front-left";
86         case TopFrontCenter: return "top-front-center";
87         case TopFrontRight: return "top-front-right";
88         case TopCenter: return "top-center";
89         case TopBackLeft: return "top-back-left";
90         case TopBackCenter: return "top-back-center";
91         case TopBackRight: return "top-back-right";
92
93         case Aux0: return "Aux0";
94         case Aux1: return "Aux1";
95         case Aux2: return "Aux2";
96         case Aux3: return "Aux3";
97         case Aux4: return "Aux4";
98         case Aux5: return "Aux5";
99         case Aux6: return "Aux6";
100         case Aux7: return "Aux7";
101         case Aux8: return "Aux8";
102         case Aux9: return "Aux9";
103         case Aux10: return "Aux10";
104         case Aux11: return "Aux11";
105         case Aux12: return "Aux12";
106         case Aux13: return "Aux13";
107         case Aux14: return "Aux14";
108         case Aux15: return "Aux15";
109
110         case MaxChannels: break;
111     }
112     return "(unknown)";
113 }
114
115
116 std::unique_ptr<FrontStablizer> CreateStablizer(const size_t outchans, const uint srate)
117 {
118     auto stablizer = FrontStablizer::Create(outchans);
119
120     /* Initialize band-splitting filter for the mid signal, with a crossover at
121      * 5khz (could be higher).
122      */
123     stablizer->MidFilter.init(5000.0f / static_cast<float>(srate));
124     for(auto &filter : stablizer->ChannelFilters)
125         filter = stablizer->MidFilter;
126
127     return stablizer;
128 }
129
130 void AllocChannels(ALCdevice *device, const size_t main_chans, const size_t real_chans)
131 {
132     TRACE("Channel config, Main: %zu, Real: %zu\n", main_chans, real_chans);
133
134     /* Allocate extra channels for any post-filter output. */
135     const size_t num_chans{main_chans + real_chans};
136
137     TRACE("Allocating %zu channels, %zu bytes\n", num_chans,
138         num_chans*sizeof(device->MixBuffer[0]));
139     device->MixBuffer.resize(num_chans);
140     al::span<FloatBufferLine> buffer{device->MixBuffer};
141
142     device->Dry.Buffer = buffer.first(main_chans);
143     buffer = buffer.subspan(main_chans);
144     if(real_chans != 0)
145     {
146         device->RealOut.Buffer = buffer.first(real_chans);
147         buffer = buffer.subspan(real_chans);
148     }
149     else
150         device->RealOut.Buffer = device->Dry.Buffer;
151 }
152
153
154 using ChannelCoeffs = std::array<float,MaxAmbiChannels>;
155 enum DecoderMode : bool {
156     SingleBand = false,
157     DualBand = true
158 };
159
160 template<DecoderMode Mode, size_t N>
161 struct DecoderConfig;
162
163 template<size_t N>
164 struct DecoderConfig<SingleBand, N> {
165     uint8_t mOrder{};
166     bool mIs3D{};
167     std::array<Channel,N> mChannels{};
168     DevAmbiScaling mScaling{};
169     std::array<float,MaxAmbiOrder+1> mOrderGain{};
170     std::array<ChannelCoeffs,N> mCoeffs{};
171 };
172
173 template<size_t N>
174 struct DecoderConfig<DualBand, N> {
175     uint8_t mOrder{};
176     bool mIs3D{};
177     std::array<Channel,N> mChannels{};
178     DevAmbiScaling mScaling{};
179     std::array<float,MaxAmbiOrder+1> mOrderGain{};
180     std::array<ChannelCoeffs,N> mCoeffs{};
181     std::array<float,MaxAmbiOrder+1> mOrderGainLF{};
182     std::array<ChannelCoeffs,N> mCoeffsLF{};
183 };
184
185 template<>
186 struct DecoderConfig<DualBand, 0> {
187     uint8_t mOrder{};
188     bool mIs3D{};
189     al::span<const Channel> mChannels;
190     DevAmbiScaling mScaling{};
191     al::span<const float> mOrderGain;
192     al::span<const ChannelCoeffs> mCoeffs;
193     al::span<const float> mOrderGainLF;
194     al::span<const ChannelCoeffs> mCoeffsLF;
195
196     template<size_t N>
197     DecoderConfig& operator=(const DecoderConfig<SingleBand,N> &rhs) noexcept
198     {
199         mOrder = rhs.mOrder;
200         mIs3D = rhs.mIs3D;
201         mChannels = rhs.mChannels;
202         mScaling = rhs.mScaling;
203         mOrderGain = rhs.mOrderGain;
204         mCoeffs = rhs.mCoeffs;
205         mOrderGainLF = {};
206         mCoeffsLF = {};
207         return *this;
208     }
209
210     template<size_t N>
211     DecoderConfig& operator=(const DecoderConfig<DualBand,N> &rhs) noexcept
212     {
213         mOrder = rhs.mOrder;
214         mIs3D = rhs.mIs3D;
215         mChannels = rhs.mChannels;
216         mScaling = rhs.mScaling;
217         mOrderGain = rhs.mOrderGain;
218         mCoeffs = rhs.mCoeffs;
219         mOrderGainLF = rhs.mOrderGainLF;
220         mCoeffsLF = rhs.mCoeffsLF;
221         return *this;
222     }
223
224     explicit operator bool() const noexcept { return !mChannels.empty(); }
225 };
226 using DecoderView = DecoderConfig<DualBand, 0>;
227
228
229 void InitNearFieldCtrl(ALCdevice *device, float ctrl_dist, uint order, bool is3d)
230 {
231     static const uint chans_per_order2d[MaxAmbiOrder+1]{ 1, 2, 2, 2 };
232     static const uint chans_per_order3d[MaxAmbiOrder+1]{ 1, 3, 5, 7 };
233
234     /* NFC is only used when AvgSpeakerDist is greater than 0. */
235     if(!device->getConfigValueBool("decoder", "nfc", false) || !(ctrl_dist > 0.0f))
236         return;
237
238     device->AvgSpeakerDist = clampf(ctrl_dist, 0.1f, 10.0f);
239     TRACE("Using near-field reference distance: %.2f meters\n", device->AvgSpeakerDist);
240
241     const float w1{SpeedOfSoundMetersPerSec /
242         (device->AvgSpeakerDist * static_cast<float>(device->Frequency))};
243     device->mNFCtrlFilter.init(w1);
244
245     auto iter = std::copy_n(is3d ? chans_per_order3d : chans_per_order2d, order+1u,
246         std::begin(device->NumChannelsPerOrder));
247     std::fill(iter, std::end(device->NumChannelsPerOrder), 0u);
248 }
249
250 void InitDistanceComp(ALCdevice *device, const al::span<const Channel> channels,
251     const al::span<const float,MAX_OUTPUT_CHANNELS> dists)
252 {
253     const float maxdist{std::accumulate(std::begin(dists), std::end(dists), 0.0f, maxf)};
254
255     if(!device->getConfigValueBool("decoder", "distance-comp", true) || !(maxdist > 0.0f))
256         return;
257
258     const auto distSampleScale = static_cast<float>(device->Frequency) / SpeedOfSoundMetersPerSec;
259     std::vector<DistanceComp::ChanData> ChanDelay;
260     ChanDelay.reserve(device->RealOut.Buffer.size());
261     size_t total{0u};
262     for(size_t chidx{0};chidx < channels.size();++chidx)
263     {
264         const Channel ch{channels[chidx]};
265         const uint idx{device->RealOut.ChannelIndex[ch]};
266         if(idx == InvalidChannelIndex)
267             continue;
268
269         const float distance{dists[chidx]};
270
271         /* Distance compensation only delays in steps of the sample rate. This
272          * is a bit less accurate since the delay time falls to the nearest
273          * sample time, but it's far simpler as it doesn't have to deal with
274          * phase offsets. This means at 48khz, for instance, the distance delay
275          * will be in steps of about 7 millimeters.
276          */
277         float delay{std::floor((maxdist - distance)*distSampleScale + 0.5f)};
278         if(delay > float{DistanceComp::MaxDelay-1})
279         {
280             ERR("Delay for channel %u (%s) exceeds buffer length (%f > %d)\n", idx,
281                 GetLabelFromChannel(ch), delay, DistanceComp::MaxDelay-1);
282             delay = float{DistanceComp::MaxDelay-1};
283         }
284
285         ChanDelay.resize(maxz(ChanDelay.size(), idx+1));
286         ChanDelay[idx].Length = static_cast<uint>(delay);
287         ChanDelay[idx].Gain = distance / maxdist;
288         TRACE("Channel %s distance comp: %u samples, %f gain\n", GetLabelFromChannel(ch),
289             ChanDelay[idx].Length, ChanDelay[idx].Gain);
290
291         /* Round up to the next 4th sample, so each channel buffer starts
292          * 16-byte aligned.
293          */
294         total += RoundUp(ChanDelay[idx].Length, 4);
295     }
296
297     if(total > 0)
298     {
299         auto chandelays = DistanceComp::Create(total);
300
301         ChanDelay[0].Buffer = chandelays->mSamples.data();
302         auto set_bufptr = [](const DistanceComp::ChanData &last, const DistanceComp::ChanData &cur)
303             -> DistanceComp::ChanData
304         {
305             DistanceComp::ChanData ret{cur};
306             ret.Buffer = last.Buffer + RoundUp(last.Length, 4);
307             return ret;
308         };
309         std::partial_sum(ChanDelay.begin(), ChanDelay.end(), chandelays->mChannels.begin(),
310             set_bufptr);
311         device->ChannelDelays = std::move(chandelays);
312     }
313 }
314
315
316 inline auto& GetAmbiScales(DevAmbiScaling scaletype) noexcept
317 {
318     if(scaletype == DevAmbiScaling::FuMa) return AmbiScale::FromFuMa();
319     if(scaletype == DevAmbiScaling::SN3D) return AmbiScale::FromSN3D();
320     return AmbiScale::FromN3D();
321 }
322
323 inline auto& GetAmbiLayout(DevAmbiLayout layouttype) noexcept
324 {
325     if(layouttype == DevAmbiLayout::FuMa) return AmbiIndex::FromFuMa();
326     return AmbiIndex::FromACN();
327 }
328
329
330 DecoderView MakeDecoderView(ALCdevice *device, const AmbDecConf *conf,
331     DecoderConfig<DualBand, MAX_OUTPUT_CHANNELS> &decoder)
332 {
333     DecoderView ret{};
334
335     decoder.mOrder = (conf->ChanMask > Ambi3OrderMask) ? uint8_t{4} :
336         (conf->ChanMask > Ambi2OrderMask) ? uint8_t{3} :
337         (conf->ChanMask > Ambi1OrderMask) ? uint8_t{2} : uint8_t{1};
338     decoder.mIs3D = (conf->ChanMask&AmbiPeriphonicMask) != 0;
339
340     switch(conf->CoeffScale)
341     {
342     case AmbDecScale::Unset: ASSUME(false); break;
343     case AmbDecScale::N3D: decoder.mScaling = DevAmbiScaling::N3D; break;
344     case AmbDecScale::SN3D: decoder.mScaling = DevAmbiScaling::SN3D; break;
345     case AmbDecScale::FuMa: decoder.mScaling = DevAmbiScaling::FuMa; break;
346     }
347
348     std::copy_n(std::begin(conf->HFOrderGain),
349         std::min(al::size(conf->HFOrderGain), al::size(decoder.mOrderGain)),
350         std::begin(decoder.mOrderGain));
351     std::copy_n(std::begin(conf->LFOrderGain),
352         std::min(al::size(conf->LFOrderGain), al::size(decoder.mOrderGainLF)),
353         std::begin(decoder.mOrderGainLF));
354
355     const auto num_coeffs = decoder.mIs3D ? AmbiChannelsFromOrder(decoder.mOrder)
356         : Ambi2DChannelsFromOrder(decoder.mOrder);
357     const auto idx_map = decoder.mIs3D ? AmbiIndex::FromACN().data()
358         : AmbiIndex::FromACN2D().data();
359     const auto hfmatrix = conf->HFMatrix;
360     const auto lfmatrix = conf->LFMatrix;
361
362     uint chan_count{0};
363     using const_speaker_span = al::span<const AmbDecConf::SpeakerConf>;
364     for(auto &speaker : const_speaker_span{conf->Speakers.get(), conf->NumSpeakers})
365     {
366         /* NOTE: AmbDec does not define any standard speaker names, however
367          * for this to work we have to by able to find the output channel
368          * the speaker definition corresponds to. Therefore, OpenAL Soft
369          * requires these channel labels to be recognized:
370          *
371          * LF = Front left
372          * RF = Front right
373          * LS = Side left
374          * RS = Side right
375          * LB = Back left
376          * RB = Back right
377          * CE = Front center
378          * CB = Back center
379          * LFT = Top front left
380          * RFT = Top front right
381          * LBT = Top back left
382          * RBT = Top back right
383          *
384          * Additionally, surround51 will acknowledge back speakers for side
385          * channels, to avoid issues with an ambdec expecting 5.1 to use the
386          * back channels.
387          */
388         Channel ch{};
389         if(speaker.Name == "LF")
390             ch = FrontLeft;
391         else if(speaker.Name == "RF")
392             ch = FrontRight;
393         else if(speaker.Name == "CE")
394             ch = FrontCenter;
395         else if(speaker.Name == "LS")
396             ch = SideLeft;
397         else if(speaker.Name == "RS")
398             ch = SideRight;
399         else if(speaker.Name == "LB")
400             ch = (device->FmtChans == DevFmtX51) ? SideLeft : BackLeft;
401         else if(speaker.Name == "RB")
402             ch = (device->FmtChans == DevFmtX51) ? SideRight : BackRight;
403         else if(speaker.Name == "CB")
404             ch = BackCenter;
405         else if(speaker.Name == "LFT")
406             ch = TopFrontLeft;
407         else if(speaker.Name == "RFT")
408             ch = TopFrontRight;
409         else if(speaker.Name == "LBT")
410             ch = TopBackLeft;
411         else if(speaker.Name == "RBT")
412             ch = TopBackRight;
413         else
414         {
415             int idx{};
416             char c{};
417             if(sscanf(speaker.Name.c_str(), "AUX%d%c", &idx, &c) != 1 || idx < 0
418                 || idx >= MaxChannels-Aux0)
419             {
420                 ERR("AmbDec speaker label \"%s\" not recognized\n", speaker.Name.c_str());
421                 continue;
422             }
423             ch = static_cast<Channel>(Aux0+idx);
424         }
425
426         decoder.mChannels[chan_count] = ch;
427         for(size_t dst{0};dst < num_coeffs;++dst)
428         {
429             const size_t src{idx_map[dst]};
430             decoder.mCoeffs[chan_count][dst] = hfmatrix[chan_count][src];
431         }
432         if(conf->FreqBands > 1)
433         {
434             for(size_t dst{0};dst < num_coeffs;++dst)
435             {
436                 const size_t src{idx_map[dst]};
437                 decoder.mCoeffsLF[chan_count][dst] = lfmatrix[chan_count][src];
438             }
439         }
440         ++chan_count;
441     }
442
443     if(chan_count > 0)
444     {
445         ret.mOrder = decoder.mOrder;
446         ret.mIs3D = decoder.mIs3D;
447         ret.mScaling = decoder.mScaling;
448         ret.mChannels = {decoder.mChannels.data(), chan_count};
449         ret.mOrderGain = decoder.mOrderGain;
450         ret.mCoeffs = {decoder.mCoeffs.data(), chan_count};
451         if(conf->FreqBands > 1)
452         {
453             ret.mOrderGainLF = decoder.mOrderGainLF;
454             ret.mCoeffsLF = {decoder.mCoeffsLF.data(), chan_count};
455         }
456     }
457     return ret;
458 }
459
460 constexpr DecoderConfig<SingleBand, 1> MonoConfig{
461     0, false, {{FrontCenter}},
462     DevAmbiScaling::N3D,
463     {{1.0f}},
464     {{ {{1.0f}} }}
465 };
466 constexpr DecoderConfig<SingleBand, 2> StereoConfig{
467     1, false, {{FrontLeft, FrontRight}},
468     DevAmbiScaling::N3D,
469     {{1.0f, 1.0f}},
470     {{
471         {{5.00000000e-1f,  2.88675135e-1f,  5.52305643e-2f}},
472         {{5.00000000e-1f, -2.88675135e-1f,  5.52305643e-2f}},
473     }}
474 };
475 constexpr DecoderConfig<DualBand, 4> QuadConfig{
476     1, false, {{BackLeft, FrontLeft, FrontRight, BackRight}},
477     DevAmbiScaling::N3D,
478     /*HF*/{{1.41421356e+0f, 1.00000000e+0f}},
479     {{
480         {{2.50000000e-1f,  2.04124145e-1f, -2.04124145e-1f}},
481         {{2.50000000e-1f,  2.04124145e-1f,  2.04124145e-1f}},
482         {{2.50000000e-1f, -2.04124145e-1f,  2.04124145e-1f}},
483         {{2.50000000e-1f, -2.04124145e-1f, -2.04124145e-1f}},
484     }},
485     /*LF*/{{1.00000000e+0f, 1.00000000e+0f}},
486     {{
487         {{2.50000000e-1f,  2.04124145e-1f, -2.04124145e-1f}},
488         {{2.50000000e-1f,  2.04124145e-1f,  2.04124145e-1f}},
489         {{2.50000000e-1f, -2.04124145e-1f,  2.04124145e-1f}},
490         {{2.50000000e-1f, -2.04124145e-1f, -2.04124145e-1f}},
491     }}
492 };
493 constexpr DecoderConfig<DualBand, 5> X51Config{
494     2, false, {{SideLeft, FrontLeft, FrontCenter, FrontRight, SideRight}},
495     DevAmbiScaling::FuMa,
496     /*HF*/{{1.00000000e+0f, 1.00000000e+0f, 1.00000000e+0f}},
497     {{
498         {{5.67316000e-1f,  4.22920000e-1f, -3.15495000e-1f, -6.34490000e-2f, -2.92380000e-2f}},
499         {{3.68584000e-1f,  2.72349000e-1f,  3.21616000e-1f,  1.92645000e-1f,  4.82600000e-2f}},
500         {{1.83579000e-1f,  0.00000000e+0f,  1.99588000e-1f,  0.00000000e+0f,  9.62820000e-2f}},
501         {{3.68584000e-1f, -2.72349000e-1f,  3.21616000e-1f, -1.92645000e-1f,  4.82600000e-2f}},
502         {{5.67316000e-1f, -4.22920000e-1f, -3.15495000e-1f,  6.34490000e-2f, -2.92380000e-2f}},
503     }},
504     /*LF*/{{1.00000000e+0f, 1.00000000e+0f, 1.00000000e+0f}},
505     {{
506         {{4.90109850e-1f,  3.77305010e-1f, -3.73106990e-1f, -1.25914530e-1f,  1.45133000e-2f}},
507         {{1.49085730e-1f,  3.03561680e-1f,  1.53290060e-1f,  2.45112480e-1f, -1.50753130e-1f}},
508         {{1.37654920e-1f,  0.00000000e+0f,  4.49417940e-1f,  0.00000000e+0f,  2.57844070e-1f}},
509         {{1.49085730e-1f, -3.03561680e-1f,  1.53290060e-1f, -2.45112480e-1f, -1.50753130e-1f}},
510         {{4.90109850e-1f, -3.77305010e-1f, -3.73106990e-1f,  1.25914530e-1f,  1.45133000e-2f}},
511     }}
512 };
513 constexpr DecoderConfig<SingleBand, 5> X61Config{
514     2, false, {{SideLeft, FrontLeft, FrontRight, SideRight, BackCenter}},
515     DevAmbiScaling::N3D,
516     {{1.0f, 1.0f, 1.0f}},
517     {{
518         {{2.04460341e-1f,  2.17177926e-1f, -4.39996780e-2f, -2.60790269e-2f, -6.87239792e-2f}},
519         {{1.58923161e-1f,  9.21772680e-2f,  1.59658796e-1f,  6.66278083e-2f,  3.84686854e-2f}},
520         {{1.58923161e-1f, -9.21772680e-2f,  1.59658796e-1f, -6.66278083e-2f,  3.84686854e-2f}},
521         {{2.04460341e-1f, -2.17177926e-1f, -4.39996780e-2f,  2.60790269e-2f, -6.87239792e-2f}},
522         {{2.50001688e-1f,  0.00000000e+0f, -2.50000094e-1f,  0.00000000e+0f,  6.05133395e-2f}},
523     }}
524 };
525 constexpr DecoderConfig<DualBand, 6> X71Config{
526     2, false, {{BackLeft, SideLeft, FrontLeft, FrontRight, SideRight, BackRight}},
527     DevAmbiScaling::N3D,
528     /*HF*/{{1.41421356e+0f, 1.22474487e+0f, 7.07106781e-1f}},
529     {{
530         {{1.66666667e-1f,  9.62250449e-2f, -1.66666667e-1f, -1.49071198e-1f,  8.60662966e-2f}},
531         {{1.66666667e-1f,  1.92450090e-1f,  0.00000000e+0f,  0.00000000e+0f, -1.72132593e-1f}},
532         {{1.66666667e-1f,  9.62250449e-2f,  1.66666667e-1f,  1.49071198e-1f,  8.60662966e-2f}},
533         {{1.66666667e-1f, -9.62250449e-2f,  1.66666667e-1f, -1.49071198e-1f,  8.60662966e-2f}},
534         {{1.66666667e-1f, -1.92450090e-1f,  0.00000000e+0f,  0.00000000e+0f, -1.72132593e-1f}},
535         {{1.66666667e-1f, -9.62250449e-2f, -1.66666667e-1f,  1.49071198e-1f,  8.60662966e-2f}},
536     }},
537     /*LF*/{{1.00000000e+0f, 1.00000000e+0f, 1.00000000e+0f}},
538     {{
539         {{1.66666667e-1f,  9.62250449e-2f, -1.66666667e-1f, -1.49071198e-1f,  8.60662966e-2f}},
540         {{1.66666667e-1f,  1.92450090e-1f,  0.00000000e+0f,  0.00000000e+0f, -1.72132593e-1f}},
541         {{1.66666667e-1f,  9.62250449e-2f,  1.66666667e-1f,  1.49071198e-1f,  8.60662966e-2f}},
542         {{1.66666667e-1f, -9.62250449e-2f,  1.66666667e-1f, -1.49071198e-1f,  8.60662966e-2f}},
543         {{1.66666667e-1f, -1.92450090e-1f,  0.00000000e+0f,  0.00000000e+0f, -1.72132593e-1f}},
544         {{1.66666667e-1f, -9.62250449e-2f, -1.66666667e-1f,  1.49071198e-1f,  8.60662966e-2f}},
545     }}
546 };
547 constexpr DecoderConfig<DualBand, 6> X3D71Config{
548     1, true, {{Aux0, SideLeft, FrontLeft, FrontRight, SideRight, Aux1}},
549     DevAmbiScaling::N3D,
550     /*HF*/{{1.73205081e+0f, 1.00000000e+0f}},
551     {{
552         {{1.666666667e-01f,  0.000000000e+00f,  2.356640879e-01f, -1.667265410e-01f}},
553         {{1.666666667e-01f,  2.033043281e-01f, -1.175581508e-01f, -1.678904388e-01f}},
554         {{1.666666667e-01f,  2.033043281e-01f,  1.175581508e-01f,  1.678904388e-01f}},
555         {{1.666666667e-01f, -2.033043281e-01f,  1.175581508e-01f,  1.678904388e-01f}},
556         {{1.666666667e-01f, -2.033043281e-01f, -1.175581508e-01f, -1.678904388e-01f}},
557         {{1.666666667e-01f,  0.000000000e+00f, -2.356640879e-01f,  1.667265410e-01f}},
558     }},
559     /*LF*/{{1.00000000e+0f, 1.00000000e+0f}},
560     {{
561         {{1.666666667e-01f,  0.000000000e+00f,  2.356640879e-01f, -1.667265410e-01f}},
562         {{1.666666667e-01f,  2.033043281e-01f, -1.175581508e-01f, -1.678904388e-01f}},
563         {{1.666666667e-01f,  2.033043281e-01f,  1.175581508e-01f,  1.678904388e-01f}},
564         {{1.666666667e-01f, -2.033043281e-01f,  1.175581508e-01f,  1.678904388e-01f}},
565         {{1.666666667e-01f, -2.033043281e-01f, -1.175581508e-01f, -1.678904388e-01f}},
566         {{1.666666667e-01f,  0.000000000e+00f, -2.356640879e-01f,  1.667265410e-01f}},
567     }}
568 };
569 constexpr DecoderConfig<SingleBand, 10> X714Config{
570     1, true, {{FrontLeft, FrontRight, SideLeft, SideRight, BackLeft, BackRight, TopFrontLeft, TopFrontRight, TopBackLeft, TopBackRight }},
571     DevAmbiScaling::N3D,
572     {{1.00000000e+0f, 1.00000000e+0f, 1.00000000e+0f}},
573     {{
574         {{1.27149251e-01f,  7.63047539e-02f, -3.64373750e-02f,  1.59700680e-01f}},
575         {{1.07005418e-01f, -7.67638760e-02f, -4.92129762e-02f,  1.29012797e-01f}},
576         {{1.26400196e-01f,  1.77494694e-01f, -3.71203389e-02f,  0.00000000e+00f}},
577         {{1.26396516e-01f, -1.77488059e-01f, -3.71297878e-02f,  0.00000000e+00f}},
578         {{1.06996956e-01f,  7.67615256e-02f, -4.92166307e-02f, -1.29001640e-01f}},
579         {{1.27145671e-01f, -7.63003471e-02f, -3.64353304e-02f, -1.59697510e-01f}},
580         {{8.80919747e-02f,  7.48940670e-02f,  9.08786244e-02f,  6.22527183e-02f}},
581         {{1.57880745e-01f, -7.28755272e-02f,  1.82364187e-01f,  8.74240284e-02f}},
582         {{1.57892225e-01f,  7.28944768e-02f,  1.82363474e-01f, -8.74301086e-02f}},
583         {{8.80892603e-02f, -7.48948724e-02f,  9.08779842e-02f, -6.22480443e-02f}},
584     }}
585 };
586
587 void InitPanning(ALCdevice *device, const bool hqdec=false, const bool stablize=false,
588     DecoderView decoder={})
589 {
590     if(!decoder)
591     {
592         switch(device->FmtChans)
593         {
594         case DevFmtMono: decoder = MonoConfig; break;
595         case DevFmtStereo: decoder = StereoConfig; break;
596         case DevFmtQuad: decoder = QuadConfig; break;
597         case DevFmtX51: decoder = X51Config; break;
598         case DevFmtX61: decoder = X61Config; break;
599         case DevFmtX71: decoder = X71Config; break;
600         case DevFmtX714: decoder = X714Config; break;
601         case DevFmtX3D71: decoder = X3D71Config; break;
602         case DevFmtAmbi3D:
603             auto&& acnmap = GetAmbiLayout(device->mAmbiLayout);
604             auto&& n3dscale = GetAmbiScales(device->mAmbiScale);
605
606             /* For DevFmtAmbi3D, the ambisonic order is already set. */
607             const size_t count{AmbiChannelsFromOrder(device->mAmbiOrder)};
608             std::transform(acnmap.begin(), acnmap.begin()+count, std::begin(device->Dry.AmbiMap),
609                 [&n3dscale](const uint8_t &acn) noexcept -> BFChannelConfig
610                 { return BFChannelConfig{1.0f/n3dscale[acn], acn}; });
611             AllocChannels(device, count, 0);
612             device->m2DMixing = false;
613
614             float avg_dist{};
615             if(auto distopt = device->configValue<float>("decoder", "speaker-dist"))
616                 avg_dist = *distopt;
617             else if(auto delayopt = device->configValue<float>("decoder", "nfc-ref-delay"))
618             {
619                 WARN("nfc-ref-delay is deprecated, use speaker-dist instead\n");
620                 avg_dist = *delayopt * SpeedOfSoundMetersPerSec;
621             }
622
623             InitNearFieldCtrl(device, avg_dist, device->mAmbiOrder, true);
624             return;
625         }
626     }
627
628     const size_t ambicount{decoder.mIs3D ? AmbiChannelsFromOrder(decoder.mOrder) :
629         Ambi2DChannelsFromOrder(decoder.mOrder)};
630     const bool dual_band{hqdec && !decoder.mCoeffsLF.empty()};
631     al::vector<ChannelDec> chancoeffs, chancoeffslf;
632     for(size_t i{0u};i < decoder.mChannels.size();++i)
633     {
634         const uint idx{device->channelIdxByName(decoder.mChannels[i])};
635         if(idx == InvalidChannelIndex)
636         {
637             ERR("Failed to find %s channel in device\n",
638                 GetLabelFromChannel(decoder.mChannels[i]));
639             continue;
640         }
641
642         auto ordermap = decoder.mIs3D ? AmbiIndex::OrderFromChannel().data()
643             : AmbiIndex::OrderFrom2DChannel().data();
644
645         chancoeffs.resize(maxz(chancoeffs.size(), idx+1u), ChannelDec{});
646         al::span<const float,MaxAmbiChannels> src{decoder.mCoeffs[i]};
647         al::span<float,MaxAmbiChannels> dst{chancoeffs[idx]};
648         for(size_t ambichan{0};ambichan < ambicount;++ambichan)
649             dst[ambichan] = src[ambichan] * decoder.mOrderGain[ordermap[ambichan]];
650
651         if(!dual_band)
652             continue;
653
654         chancoeffslf.resize(maxz(chancoeffslf.size(), idx+1u), ChannelDec{});
655         src = decoder.mCoeffsLF[i];
656         dst = chancoeffslf[idx];
657         for(size_t ambichan{0};ambichan < ambicount;++ambichan)
658             dst[ambichan] = src[ambichan] * decoder.mOrderGainLF[ordermap[ambichan]];
659     }
660
661     /* For non-DevFmtAmbi3D, set the ambisonic order. */
662     device->mAmbiOrder = decoder.mOrder;
663     device->m2DMixing = !decoder.mIs3D;
664
665     const al::span<const uint8_t> acnmap{decoder.mIs3D ? AmbiIndex::FromACN().data() :
666         AmbiIndex::FromACN2D().data(), ambicount};
667     auto&& coeffscale = GetAmbiScales(decoder.mScaling);
668     std::transform(acnmap.begin(), acnmap.end(), std::begin(device->Dry.AmbiMap),
669         [&coeffscale](const uint8_t &acn) noexcept
670         { return BFChannelConfig{1.0f/coeffscale[acn], acn}; });
671     AllocChannels(device, ambicount, device->channelsFromFmt());
672
673     std::unique_ptr<FrontStablizer> stablizer;
674     if(stablize)
675     {
676         /* Only enable the stablizer if the decoder does not output to the
677          * front-center channel.
678          */
679         const auto cidx = device->RealOut.ChannelIndex[FrontCenter];
680         bool hasfc{false};
681         if(cidx < chancoeffs.size())
682         {
683             for(const auto &coeff : chancoeffs[cidx])
684                 hasfc |= coeff != 0.0f;
685         }
686         if(!hasfc && cidx < chancoeffslf.size())
687         {
688             for(const auto &coeff : chancoeffslf[cidx])
689                 hasfc |= coeff != 0.0f;
690         }
691         if(!hasfc)
692         {
693             stablizer = CreateStablizer(device->channelsFromFmt(), device->Frequency);
694             TRACE("Front stablizer enabled\n");
695         }
696     }
697
698     TRACE("Enabling %s-band %s-order%s ambisonic decoder\n",
699         !dual_band ? "single" : "dual",
700         (decoder.mOrder > 3) ? "fourth" :
701         (decoder.mOrder > 2) ? "third" :
702         (decoder.mOrder > 1) ? "second" : "first",
703         decoder.mIs3D ? " periphonic" : "");
704     device->AmbiDecoder = BFormatDec::Create(ambicount, chancoeffs, chancoeffslf,
705         device->mXOverFreq/static_cast<float>(device->Frequency), std::move(stablizer));
706 }
707
708 void InitHrtfPanning(ALCdevice *device)
709 {
710     constexpr float Deg180{al::numbers::pi_v<float>};
711     constexpr float Deg_90{Deg180 / 2.0f /* 90 degrees*/};
712     constexpr float Deg_45{Deg_90 / 2.0f /* 45 degrees*/};
713     constexpr float Deg135{Deg_45 * 3.0f /*135 degrees*/};
714     constexpr float Deg_21{3.648638281e-01f /* 20~ 21 degrees*/};
715     constexpr float Deg_32{5.535743589e-01f /* 31~ 32 degrees*/};
716     constexpr float Deg_35{6.154797087e-01f /* 35~ 36 degrees*/};
717     constexpr float Deg_58{1.017221968e+00f /* 58~ 59 degrees*/};
718     constexpr float Deg_69{1.205932499e+00f /* 69~ 70 degrees*/};
719     constexpr float Deg111{1.935660155e+00f /*110~111 degrees*/};
720     constexpr float Deg122{2.124370686e+00f /*121~122 degrees*/};
721     static const AngularPoint AmbiPoints1O[]{
722         { EvRadians{ Deg_35}, AzRadians{-Deg_45} },
723         { EvRadians{ Deg_35}, AzRadians{-Deg135} },
724         { EvRadians{ Deg_35}, AzRadians{ Deg_45} },
725         { EvRadians{ Deg_35}, AzRadians{ Deg135} },
726         { EvRadians{-Deg_35}, AzRadians{-Deg_45} },
727         { EvRadians{-Deg_35}, AzRadians{-Deg135} },
728         { EvRadians{-Deg_35}, AzRadians{ Deg_45} },
729         { EvRadians{-Deg_35}, AzRadians{ Deg135} },
730     }, AmbiPoints2O[]{
731         { EvRadians{-Deg_32}, AzRadians{   0.0f} },
732         { EvRadians{   0.0f}, AzRadians{ Deg_58} },
733         { EvRadians{ Deg_58}, AzRadians{ Deg_90} },
734         { EvRadians{ Deg_32}, AzRadians{   0.0f} },
735         { EvRadians{   0.0f}, AzRadians{ Deg122} },
736         { EvRadians{-Deg_58}, AzRadians{-Deg_90} },
737         { EvRadians{-Deg_32}, AzRadians{ Deg180} },
738         { EvRadians{   0.0f}, AzRadians{-Deg122} },
739         { EvRadians{ Deg_58}, AzRadians{-Deg_90} },
740         { EvRadians{ Deg_32}, AzRadians{ Deg180} },
741         { EvRadians{   0.0f}, AzRadians{-Deg_58} },
742         { EvRadians{-Deg_58}, AzRadians{ Deg_90} },
743     }, AmbiPoints3O[]{
744         { EvRadians{ Deg_69}, AzRadians{-Deg_90} },
745         { EvRadians{ Deg_69}, AzRadians{ Deg_90} },
746         { EvRadians{-Deg_69}, AzRadians{-Deg_90} },
747         { EvRadians{-Deg_69}, AzRadians{ Deg_90} },
748         { EvRadians{   0.0f}, AzRadians{-Deg_69} },
749         { EvRadians{   0.0f}, AzRadians{-Deg111} },
750         { EvRadians{   0.0f}, AzRadians{ Deg_69} },
751         { EvRadians{   0.0f}, AzRadians{ Deg111} },
752         { EvRadians{ Deg_21}, AzRadians{   0.0f} },
753         { EvRadians{ Deg_21}, AzRadians{ Deg180} },
754         { EvRadians{-Deg_21}, AzRadians{   0.0f} },
755         { EvRadians{-Deg_21}, AzRadians{ Deg180} },
756         { EvRadians{ Deg_35}, AzRadians{-Deg_45} },
757         { EvRadians{ Deg_35}, AzRadians{-Deg135} },
758         { EvRadians{ Deg_35}, AzRadians{ Deg_45} },
759         { EvRadians{ Deg_35}, AzRadians{ Deg135} },
760         { EvRadians{-Deg_35}, AzRadians{-Deg_45} },
761         { EvRadians{-Deg_35}, AzRadians{-Deg135} },
762         { EvRadians{-Deg_35}, AzRadians{ Deg_45} },
763         { EvRadians{-Deg_35}, AzRadians{ Deg135} },
764     };
765     static const float AmbiMatrix1O[][MaxAmbiChannels]{
766         { 1.250000000e-01f,  1.250000000e-01f,  1.250000000e-01f,  1.250000000e-01f },
767         { 1.250000000e-01f,  1.250000000e-01f,  1.250000000e-01f, -1.250000000e-01f },
768         { 1.250000000e-01f, -1.250000000e-01f,  1.250000000e-01f,  1.250000000e-01f },
769         { 1.250000000e-01f, -1.250000000e-01f,  1.250000000e-01f, -1.250000000e-01f },
770         { 1.250000000e-01f,  1.250000000e-01f, -1.250000000e-01f,  1.250000000e-01f },
771         { 1.250000000e-01f,  1.250000000e-01f, -1.250000000e-01f, -1.250000000e-01f },
772         { 1.250000000e-01f, -1.250000000e-01f, -1.250000000e-01f,  1.250000000e-01f },
773         { 1.250000000e-01f, -1.250000000e-01f, -1.250000000e-01f, -1.250000000e-01f },
774     }, AmbiMatrix2O[][MaxAmbiChannels]{
775         { 8.333333333e-02f,  0.000000000e+00f, -7.588274978e-02f,  1.227808683e-01f,  0.000000000e+00f,  0.000000000e+00f, -1.591525047e-02f, -1.443375673e-01f,  1.167715449e-01f, },
776         { 8.333333333e-02f, -1.227808683e-01f,  0.000000000e+00f,  7.588274978e-02f, -1.443375673e-01f,  0.000000000e+00f, -9.316949906e-02f,  0.000000000e+00f, -7.216878365e-02f, },
777         { 8.333333333e-02f, -7.588274978e-02f,  1.227808683e-01f,  0.000000000e+00f,  0.000000000e+00f, -1.443375673e-01f,  1.090847495e-01f,  0.000000000e+00f, -4.460276122e-02f, },
778         { 8.333333333e-02f,  0.000000000e+00f,  7.588274978e-02f,  1.227808683e-01f,  0.000000000e+00f,  0.000000000e+00f, -1.591525047e-02f,  1.443375673e-01f,  1.167715449e-01f, },
779         { 8.333333333e-02f, -1.227808683e-01f,  0.000000000e+00f, -7.588274978e-02f,  1.443375673e-01f,  0.000000000e+00f, -9.316949906e-02f,  0.000000000e+00f, -7.216878365e-02f, },
780         { 8.333333333e-02f,  7.588274978e-02f, -1.227808683e-01f,  0.000000000e+00f,  0.000000000e+00f, -1.443375673e-01f,  1.090847495e-01f,  0.000000000e+00f, -4.460276122e-02f, },
781         { 8.333333333e-02f,  0.000000000e+00f, -7.588274978e-02f, -1.227808683e-01f,  0.000000000e+00f,  0.000000000e+00f, -1.591525047e-02f,  1.443375673e-01f,  1.167715449e-01f, },
782         { 8.333333333e-02f,  1.227808683e-01f,  0.000000000e+00f, -7.588274978e-02f, -1.443375673e-01f,  0.000000000e+00f, -9.316949906e-02f,  0.000000000e+00f, -7.216878365e-02f, },
783         { 8.333333333e-02f,  7.588274978e-02f,  1.227808683e-01f,  0.000000000e+00f,  0.000000000e+00f,  1.443375673e-01f,  1.090847495e-01f,  0.000000000e+00f, -4.460276122e-02f, },
784         { 8.333333333e-02f,  0.000000000e+00f,  7.588274978e-02f, -1.227808683e-01f,  0.000000000e+00f,  0.000000000e+00f, -1.591525047e-02f, -1.443375673e-01f,  1.167715449e-01f, },
785         { 8.333333333e-02f,  1.227808683e-01f,  0.000000000e+00f,  7.588274978e-02f,  1.443375673e-01f,  0.000000000e+00f, -9.316949906e-02f,  0.000000000e+00f, -7.216878365e-02f, },
786         { 8.333333333e-02f, -7.588274978e-02f, -1.227808683e-01f,  0.000000000e+00f,  0.000000000e+00f,  1.443375673e-01f,  1.090847495e-01f,  0.000000000e+00f, -4.460276122e-02f, },
787     }, AmbiMatrix3O[][MaxAmbiChannels]{
788         { 5.000000000e-02f,  3.090169944e-02f,  8.090169944e-02f,  0.000000000e+00f,  0.000000000e+00f,  6.454972244e-02f,  9.045084972e-02f,  0.000000000e+00f, -1.232790000e-02f, -1.256118221e-01f,  0.000000000e+00f,  1.126112056e-01f,  7.944389175e-02f,  0.000000000e+00f,  2.421151497e-02f,  0.000000000e+00f, },
789         { 5.000000000e-02f, -3.090169944e-02f,  8.090169944e-02f,  0.000000000e+00f,  0.000000000e+00f, -6.454972244e-02f,  9.045084972e-02f,  0.000000000e+00f, -1.232790000e-02f,  1.256118221e-01f,  0.000000000e+00f, -1.126112056e-01f,  7.944389175e-02f,  0.000000000e+00f,  2.421151497e-02f,  0.000000000e+00f, },
790         { 5.000000000e-02f,  3.090169944e-02f, -8.090169944e-02f,  0.000000000e+00f,  0.000000000e+00f, -6.454972244e-02f,  9.045084972e-02f,  0.000000000e+00f, -1.232790000e-02f, -1.256118221e-01f,  0.000000000e+00f,  1.126112056e-01f, -7.944389175e-02f,  0.000000000e+00f, -2.421151497e-02f,  0.000000000e+00f, },
791         { 5.000000000e-02f, -3.090169944e-02f, -8.090169944e-02f,  0.000000000e+00f,  0.000000000e+00f,  6.454972244e-02f,  9.045084972e-02f,  0.000000000e+00f, -1.232790000e-02f,  1.256118221e-01f,  0.000000000e+00f, -1.126112056e-01f, -7.944389175e-02f,  0.000000000e+00f, -2.421151497e-02f,  0.000000000e+00f, },
792         { 5.000000000e-02f,  8.090169944e-02f,  0.000000000e+00f,  3.090169944e-02f,  6.454972244e-02f,  0.000000000e+00f, -5.590169944e-02f,  0.000000000e+00f, -7.216878365e-02f, -7.763237543e-02f,  0.000000000e+00f, -2.950836627e-02f,  0.000000000e+00f, -1.497759251e-01f,  0.000000000e+00f, -7.763237543e-02f, },
793         { 5.000000000e-02f,  8.090169944e-02f,  0.000000000e+00f, -3.090169944e-02f, -6.454972244e-02f,  0.000000000e+00f, -5.590169944e-02f,  0.000000000e+00f, -7.216878365e-02f, -7.763237543e-02f,  0.000000000e+00f, -2.950836627e-02f,  0.000000000e+00f,  1.497759251e-01f,  0.000000000e+00f,  7.763237543e-02f, },
794         { 5.000000000e-02f, -8.090169944e-02f,  0.000000000e+00f,  3.090169944e-02f, -6.454972244e-02f,  0.000000000e+00f, -5.590169944e-02f,  0.000000000e+00f, -7.216878365e-02f,  7.763237543e-02f,  0.000000000e+00f,  2.950836627e-02f,  0.000000000e+00f, -1.497759251e-01f,  0.000000000e+00f, -7.763237543e-02f, },
795         { 5.000000000e-02f, -8.090169944e-02f,  0.000000000e+00f, -3.090169944e-02f,  6.454972244e-02f,  0.000000000e+00f, -5.590169944e-02f,  0.000000000e+00f, -7.216878365e-02f,  7.763237543e-02f,  0.000000000e+00f,  2.950836627e-02f,  0.000000000e+00f,  1.497759251e-01f,  0.000000000e+00f,  7.763237543e-02f, },
796         { 5.000000000e-02f,  0.000000000e+00f,  3.090169944e-02f,  8.090169944e-02f,  0.000000000e+00f,  0.000000000e+00f, -3.454915028e-02f,  6.454972244e-02f,  8.449668365e-02f,  0.000000000e+00f,  0.000000000e+00f,  0.000000000e+00f,  3.034486645e-02f, -6.779013272e-02f,  1.659481923e-01f,  4.797944664e-02f, },
797         { 5.000000000e-02f,  0.000000000e+00f,  3.090169944e-02f, -8.090169944e-02f,  0.000000000e+00f,  0.000000000e+00f, -3.454915028e-02f, -6.454972244e-02f,  8.449668365e-02f,  0.000000000e+00f,  0.000000000e+00f,  0.000000000e+00f,  3.034486645e-02f,  6.779013272e-02f,  1.659481923e-01f, -4.797944664e-02f, },
798         { 5.000000000e-02f,  0.000000000e+00f, -3.090169944e-02f,  8.090169944e-02f,  0.000000000e+00f,  0.000000000e+00f, -3.454915028e-02f, -6.454972244e-02f,  8.449668365e-02f,  0.000000000e+00f,  0.000000000e+00f,  0.000000000e+00f, -3.034486645e-02f, -6.779013272e-02f, -1.659481923e-01f,  4.797944664e-02f, },
799         { 5.000000000e-02f,  0.000000000e+00f, -3.090169944e-02f, -8.090169944e-02f,  0.000000000e+00f,  0.000000000e+00f, -3.454915028e-02f,  6.454972244e-02f,  8.449668365e-02f,  0.000000000e+00f,  0.000000000e+00f,  0.000000000e+00f, -3.034486645e-02f,  6.779013272e-02f, -1.659481923e-01f, -4.797944664e-02f, },
800         { 5.000000000e-02f,  5.000000000e-02f,  5.000000000e-02f,  5.000000000e-02f,  6.454972244e-02f,  6.454972244e-02f,  0.000000000e+00f,  6.454972244e-02f,  0.000000000e+00f,  1.016220987e-01f,  6.338656910e-02f, -1.092600649e-02f, -7.364853795e-02f,  1.011266756e-01f, -7.086833869e-02f, -1.482646439e-02f, },
801         { 5.000000000e-02f,  5.000000000e-02f,  5.000000000e-02f, -5.000000000e-02f, -6.454972244e-02f,  6.454972244e-02f,  0.000000000e+00f, -6.454972244e-02f,  0.000000000e+00f,  1.016220987e-01f, -6.338656910e-02f, -1.092600649e-02f, -7.364853795e-02f, -1.011266756e-01f, -7.086833869e-02f,  1.482646439e-02f, },
802         { 5.000000000e-02f, -5.000000000e-02f,  5.000000000e-02f,  5.000000000e-02f, -6.454972244e-02f, -6.454972244e-02f,  0.000000000e+00f,  6.454972244e-02f,  0.000000000e+00f, -1.016220987e-01f, -6.338656910e-02f,  1.092600649e-02f, -7.364853795e-02f,  1.011266756e-01f, -7.086833869e-02f, -1.482646439e-02f, },
803         { 5.000000000e-02f, -5.000000000e-02f,  5.000000000e-02f, -5.000000000e-02f,  6.454972244e-02f, -6.454972244e-02f,  0.000000000e+00f, -6.454972244e-02f,  0.000000000e+00f, -1.016220987e-01f,  6.338656910e-02f,  1.092600649e-02f, -7.364853795e-02f, -1.011266756e-01f, -7.086833869e-02f,  1.482646439e-02f, },
804         { 5.000000000e-02f,  5.000000000e-02f, -5.000000000e-02f,  5.000000000e-02f,  6.454972244e-02f, -6.454972244e-02f,  0.000000000e+00f, -6.454972244e-02f,  0.000000000e+00f,  1.016220987e-01f, -6.338656910e-02f, -1.092600649e-02f,  7.364853795e-02f,  1.011266756e-01f,  7.086833869e-02f, -1.482646439e-02f, },
805         { 5.000000000e-02f,  5.000000000e-02f, -5.000000000e-02f, -5.000000000e-02f, -6.454972244e-02f, -6.454972244e-02f,  0.000000000e+00f,  6.454972244e-02f,  0.000000000e+00f,  1.016220987e-01f,  6.338656910e-02f, -1.092600649e-02f,  7.364853795e-02f, -1.011266756e-01f,  7.086833869e-02f,  1.482646439e-02f, },
806         { 5.000000000e-02f, -5.000000000e-02f, -5.000000000e-02f,  5.000000000e-02f, -6.454972244e-02f,  6.454972244e-02f,  0.000000000e+00f, -6.454972244e-02f,  0.000000000e+00f, -1.016220987e-01f,  6.338656910e-02f,  1.092600649e-02f,  7.364853795e-02f,  1.011266756e-01f,  7.086833869e-02f, -1.482646439e-02f, },
807         { 5.000000000e-02f, -5.000000000e-02f, -5.000000000e-02f, -5.000000000e-02f,  6.454972244e-02f,  6.454972244e-02f,  0.000000000e+00f,  6.454972244e-02f,  0.000000000e+00f, -1.016220987e-01f, -6.338656910e-02f,  1.092600649e-02f,  7.364853795e-02f, -1.011266756e-01f,  7.086833869e-02f,  1.482646439e-02f, },
808     };
809     static const float AmbiOrderHFGain1O[MaxAmbiOrder+1]{
810         /*ENRGY*/ 2.000000000e+00f, 1.154700538e+00f
811     }, AmbiOrderHFGain2O[MaxAmbiOrder+1]{
812         /*ENRGY*/ 1.825741858e+00f, 1.414213562e+00f, 7.302967433e-01f
813         /*AMP   1.000000000e+00f, 7.745966692e-01f, 4.000000000e-01f*/
814         /*RMS   9.128709292e-01f, 7.071067812e-01f, 3.651483717e-01f*/
815     }, AmbiOrderHFGain3O[MaxAmbiOrder+1]{
816         /*ENRGY 1.865086714e+00f, 1.606093894e+00f, 1.142055301e+00f, 5.683795528e-01f*/
817         /*AMP*/ 1.000000000e+00f, 8.611363116e-01f, 6.123336207e-01f, 3.047469850e-01f
818         /*RMS   8.340921354e-01f, 7.182670250e-01f, 5.107426573e-01f, 2.541870634e-01f*/
819     };
820
821     static_assert(al::size(AmbiPoints1O) == al::size(AmbiMatrix1O), "First-Order Ambisonic HRTF mismatch");
822     static_assert(al::size(AmbiPoints2O) == al::size(AmbiMatrix2O), "Second-Order Ambisonic HRTF mismatch");
823     static_assert(al::size(AmbiPoints3O) == al::size(AmbiMatrix3O), "Third-Order Ambisonic HRTF mismatch");
824
825     /* A 700hz crossover frequency provides tighter sound imaging at the sweet
826      * spot with ambisonic decoding, as the distance between the ears is closer
827      * to half this frequency wavelength, which is the optimal point where the
828      * response should change between optimizing phase vs volume. Normally this
829      * tighter imaging is at the cost of a smaller sweet spot, but since the
830      * listener is fixed in the center of the HRTF responses for the decoder,
831      * we don't have to worry about ever being out of the sweet spot.
832      *
833      * A better option here may be to have the head radius as part of the HRTF
834      * data set and calculate the optimal crossover frequency from that.
835      */
836     device->mXOverFreq = 700.0f;
837
838     /* Don't bother with HOA when using full HRTF rendering. Nothing needs it,
839      * and it eases the CPU/memory load.
840      */
841     device->mRenderMode = RenderMode::Hrtf;
842     uint ambi_order{1};
843     if(auto modeopt = device->configValue<std::string>(nullptr, "hrtf-mode"))
844     {
845         struct HrtfModeEntry {
846             char name[8];
847             RenderMode mode;
848             uint order;
849         };
850         static const HrtfModeEntry hrtf_modes[]{
851             { "full", RenderMode::Hrtf, 1 },
852             { "ambi1", RenderMode::Normal, 1 },
853             { "ambi2", RenderMode::Normal, 2 },
854             { "ambi3", RenderMode::Normal, 3 },
855         };
856
857         const char *mode{modeopt->c_str()};
858         if(al::strcasecmp(mode, "basic") == 0)
859         {
860             ERR("HRTF mode \"%s\" deprecated, substituting \"%s\"\n", mode, "ambi2");
861             mode = "ambi2";
862         }
863
864         auto match_entry = [mode](const HrtfModeEntry &entry) -> bool
865         { return al::strcasecmp(mode, entry.name) == 0; };
866         auto iter = std::find_if(std::begin(hrtf_modes), std::end(hrtf_modes), match_entry);
867         if(iter == std::end(hrtf_modes))
868             ERR("Unexpected hrtf-mode: %s\n", mode);
869         else
870         {
871             device->mRenderMode = iter->mode;
872             ambi_order = iter->order;
873         }
874     }
875     TRACE("%u%s order %sHRTF rendering enabled, using \"%s\"\n", ambi_order,
876         (((ambi_order%100)/10) == 1) ? "th" :
877         ((ambi_order%10) == 1) ? "st" :
878         ((ambi_order%10) == 2) ? "nd" :
879         ((ambi_order%10) == 3) ? "rd" : "th",
880         (device->mRenderMode == RenderMode::Hrtf) ? "+ Full " : "",
881         device->mHrtfName.c_str());
882
883     bool perHrirMin{false};
884     al::span<const AngularPoint> AmbiPoints{AmbiPoints1O};
885     const float (*AmbiMatrix)[MaxAmbiChannels]{AmbiMatrix1O};
886     al::span<const float,MaxAmbiOrder+1> AmbiOrderHFGain{AmbiOrderHFGain1O};
887     if(ambi_order >= 3)
888     {
889         perHrirMin = true;
890         AmbiPoints = AmbiPoints3O;
891         AmbiMatrix = AmbiMatrix3O;
892         AmbiOrderHFGain = AmbiOrderHFGain3O;
893     }
894     else if(ambi_order == 2)
895     {
896         AmbiPoints = AmbiPoints2O;
897         AmbiMatrix = AmbiMatrix2O;
898         AmbiOrderHFGain = AmbiOrderHFGain2O;
899     }
900     device->mAmbiOrder = ambi_order;
901     device->m2DMixing = false;
902
903     const size_t count{AmbiChannelsFromOrder(ambi_order)};
904     std::transform(AmbiIndex::FromACN().begin(), AmbiIndex::FromACN().begin()+count,
905         std::begin(device->Dry.AmbiMap),
906         [](const uint8_t &index) noexcept { return BFChannelConfig{1.0f, index}; }
907     );
908     AllocChannels(device, count, device->channelsFromFmt());
909
910     HrtfStore *Hrtf{device->mHrtf.get()};
911     auto hrtfstate = DirectHrtfState::Create(count);
912     hrtfstate->build(Hrtf, device->mIrSize, perHrirMin, AmbiPoints, AmbiMatrix, device->mXOverFreq,
913         AmbiOrderHFGain);
914     device->mHrtfState = std::move(hrtfstate);
915
916     InitNearFieldCtrl(device, Hrtf->mFields[0].distance, ambi_order, true);
917 }
918
919 void InitUhjPanning(ALCdevice *device)
920 {
921     /* UHJ is always 2D first-order. */
922     constexpr size_t count{Ambi2DChannelsFromOrder(1)};
923
924     device->mAmbiOrder = 1;
925     device->m2DMixing = true;
926
927     auto acnmap_begin = AmbiIndex::FromFuMa2D().begin();
928     std::transform(acnmap_begin, acnmap_begin + count, std::begin(device->Dry.AmbiMap),
929         [](const uint8_t &acn) noexcept -> BFChannelConfig
930         { return BFChannelConfig{1.0f/AmbiScale::FromUHJ()[acn], acn}; });
931     AllocChannels(device, count, device->channelsFromFmt());
932 }
933
934 } // namespace
935
936 void aluInitRenderer(ALCdevice *device, int hrtf_id, al::optional<StereoEncoding> stereomode)
937 {
938     /* Hold the HRTF the device last used, in case it's used again. */
939     HrtfStorePtr old_hrtf{std::move(device->mHrtf)};
940
941     device->mHrtfState = nullptr;
942     device->mHrtf = nullptr;
943     device->mIrSize = 0;
944     device->mHrtfName.clear();
945     device->mXOverFreq = 400.0f;
946     device->m2DMixing = false;
947     device->mRenderMode = RenderMode::Normal;
948
949     if(device->FmtChans != DevFmtStereo)
950     {
951         old_hrtf = nullptr;
952         if(stereomode && *stereomode == StereoEncoding::Hrtf)
953             device->mHrtfStatus = ALC_HRTF_UNSUPPORTED_FORMAT_SOFT;
954
955         const char *layout{nullptr};
956         switch(device->FmtChans)
957         {
958         case DevFmtQuad: layout = "quad"; break;
959         case DevFmtX51: layout = "surround51"; break;
960         case DevFmtX61: layout = "surround61"; break;
961         case DevFmtX71: layout = "surround71"; break;
962         case DevFmtX714: layout = "surround714"; break;
963         case DevFmtX3D71: layout = "surround3d71"; break;
964         /* Mono, Stereo, and Ambisonics output don't use custom decoders. */
965         case DevFmtMono:
966         case DevFmtStereo:
967         case DevFmtAmbi3D:
968             break;
969         }
970
971         std::unique_ptr<DecoderConfig<DualBand,MAX_OUTPUT_CHANNELS>> decoder_store;
972         DecoderView decoder{};
973         float speakerdists[MAX_OUTPUT_CHANNELS]{};
974         auto load_config = [device,&decoder_store,&decoder,&speakerdists](const char *config)
975         {
976             AmbDecConf conf{};
977             if(auto err = conf.load(config))
978             {
979                 ERR("Failed to load layout file %s\n", config);
980                 ERR("  %s\n", err->c_str());
981             }
982             else if(conf.NumSpeakers > MAX_OUTPUT_CHANNELS)
983                 ERR("Unsupported decoder speaker count %zu (max %d)\n", conf.NumSpeakers,
984                     MAX_OUTPUT_CHANNELS);
985             else if(conf.ChanMask > Ambi3OrderMask)
986                 ERR("Unsupported decoder channel mask 0x%04x (max 0x%x)\n", conf.ChanMask,
987                     Ambi3OrderMask);
988             else
989             {
990                 device->mXOverFreq = clampf(conf.XOverFreq, 100.0f, 1000.0f);
991
992                 decoder_store = std::make_unique<DecoderConfig<DualBand,MAX_OUTPUT_CHANNELS>>();
993                 decoder = MakeDecoderView(device, &conf, *decoder_store);
994                 for(size_t i{0};i < decoder.mChannels.size();++i)
995                     speakerdists[i] = conf.Speakers[i].Distance;
996             }
997         };
998         if(layout)
999         {
1000             if(auto decopt = device->configValue<std::string>("decoder", layout))
1001                 load_config(decopt->c_str());
1002         }
1003
1004         /* Enable the stablizer only for formats that have front-left, front-
1005          * right, and front-center outputs.
1006          */
1007         const bool stablize{device->RealOut.ChannelIndex[FrontCenter] != InvalidChannelIndex
1008             && device->RealOut.ChannelIndex[FrontLeft] != InvalidChannelIndex
1009             && device->RealOut.ChannelIndex[FrontRight] != InvalidChannelIndex
1010             && device->getConfigValueBool(nullptr, "front-stablizer", false) != 0};
1011         const bool hqdec{device->getConfigValueBool("decoder", "hq-mode", true) != 0};
1012         InitPanning(device, hqdec, stablize, decoder);
1013         if(decoder)
1014         {
1015             float accum_dist{0.0f}, spkr_count{0.0f};
1016             for(auto dist : speakerdists)
1017             {
1018                 if(dist > 0.0f)
1019                 {
1020                     accum_dist += dist;
1021                     spkr_count += 1.0f;
1022                 }
1023             }
1024
1025             const float avg_dist{(accum_dist > 0.0f && spkr_count > 0) ? accum_dist/spkr_count :
1026                 device->configValue<float>("decoder", "speaker-dist").value_or(1.0f)};
1027             InitNearFieldCtrl(device, avg_dist, decoder.mOrder, decoder.mIs3D);
1028
1029             if(spkr_count > 0)
1030                 InitDistanceComp(device, decoder.mChannels, speakerdists);
1031         }
1032         if(auto *ambidec{device->AmbiDecoder.get()})
1033         {
1034             device->PostProcess = ambidec->hasStablizer() ? &ALCdevice::ProcessAmbiDecStablized
1035                 : &ALCdevice::ProcessAmbiDec;
1036         }
1037         return;
1038     }
1039
1040
1041     /* If HRTF is explicitly requested, or if there's no explicit request and
1042      * the device is headphones, try to enable it.
1043      */
1044     if(stereomode.value_or(StereoEncoding::Default) == StereoEncoding::Hrtf
1045         || (!stereomode && device->Flags.test(DirectEar)))
1046     {
1047         if(device->mHrtfList.empty())
1048             device->enumerateHrtfs();
1049
1050         if(hrtf_id >= 0 && static_cast<uint>(hrtf_id) < device->mHrtfList.size())
1051         {
1052             const std::string &hrtfname = device->mHrtfList[static_cast<uint>(hrtf_id)];
1053             if(HrtfStorePtr hrtf{GetLoadedHrtf(hrtfname, device->Frequency)})
1054             {
1055                 device->mHrtf = std::move(hrtf);
1056                 device->mHrtfName = hrtfname;
1057             }
1058         }
1059
1060         if(!device->mHrtf)
1061         {
1062             for(const auto &hrtfname : device->mHrtfList)
1063             {
1064                 if(HrtfStorePtr hrtf{GetLoadedHrtf(hrtfname, device->Frequency)})
1065                 {
1066                     device->mHrtf = std::move(hrtf);
1067                     device->mHrtfName = hrtfname;
1068                     break;
1069                 }
1070             }
1071         }
1072
1073         if(device->mHrtf)
1074         {
1075             old_hrtf = nullptr;
1076
1077             HrtfStore *hrtf{device->mHrtf.get()};
1078             device->mIrSize = hrtf->mIrSize;
1079             if(auto hrtfsizeopt = device->configValue<uint>(nullptr, "hrtf-size"))
1080             {
1081                 if(*hrtfsizeopt > 0 && *hrtfsizeopt < device->mIrSize)
1082                     device->mIrSize = maxu(*hrtfsizeopt, MinIrLength);
1083             }
1084
1085             InitHrtfPanning(device);
1086             device->PostProcess = &ALCdevice::ProcessHrtf;
1087             device->mHrtfStatus = ALC_HRTF_ENABLED_SOFT;
1088             return;
1089         }
1090     }
1091     old_hrtf = nullptr;
1092
1093     if(stereomode.value_or(StereoEncoding::Default) == StereoEncoding::Uhj)
1094     {
1095         switch(UhjEncodeQuality)
1096         {
1097         case UhjQualityType::IIR:
1098             device->mUhjEncoder = std::make_unique<UhjEncoderIIR>();
1099             break;
1100         case UhjQualityType::FIR256:
1101             device->mUhjEncoder = std::make_unique<UhjEncoder<UhjLength256>>();
1102             break;
1103         case UhjQualityType::FIR512:
1104             device->mUhjEncoder = std::make_unique<UhjEncoder<UhjLength512>>();
1105             break;
1106         }
1107         assert(device->mUhjEncoder != nullptr);
1108
1109         TRACE("UHJ enabled\n");
1110         InitUhjPanning(device);
1111         device->PostProcess = &ALCdevice::ProcessUhj;
1112         return;
1113     }
1114
1115     device->mRenderMode = RenderMode::Pairwise;
1116     if(device->Type != DeviceType::Loopback)
1117     {
1118         if(auto cflevopt = device->configValue<int>(nullptr, "cf_level"))
1119         {
1120             if(*cflevopt > 0 && *cflevopt <= 6)
1121             {
1122                 device->Bs2b = std::make_unique<bs2b>();
1123                 bs2b_set_params(device->Bs2b.get(), *cflevopt,
1124                     static_cast<int>(device->Frequency));
1125                 TRACE("BS2B enabled\n");
1126                 InitPanning(device);
1127                 device->PostProcess = &ALCdevice::ProcessBs2b;
1128                 return;
1129             }
1130         }
1131     }
1132
1133     TRACE("Stereo rendering\n");
1134     InitPanning(device);
1135     device->PostProcess = &ALCdevice::ProcessAmbiDec;
1136 }
1137
1138
1139 void aluInitEffectPanning(EffectSlot *slot, ALCcontext *context)
1140 {
1141     DeviceBase *device{context->mDevice};
1142     const size_t count{AmbiChannelsFromOrder(device->mAmbiOrder)};
1143
1144     slot->mWetBuffer.resize(count);
1145
1146     auto acnmap_begin = AmbiIndex::FromACN().begin();
1147     auto iter = std::transform(acnmap_begin, acnmap_begin + count, slot->Wet.AmbiMap.begin(),
1148         [](const uint8_t &acn) noexcept -> BFChannelConfig
1149         { return BFChannelConfig{1.0f, acn}; });
1150     std::fill(iter, slot->Wet.AmbiMap.end(), BFChannelConfig{});
1151     slot->Wet.Buffer = slot->mWetBuffer;
1152 }